PANDA DAQ and FEE

TUM Physics Department E18 I.Konorov

Talk overview

- PANDA experiment
- Trigger less FEE & DAQ
- PANDA detectors and data rates
- FE electronics
- TDC: GET4 and HPTDC
- DAQ architecture
- SODA time distribution system

PANDA experiment

- Physics: Strong interaction studies with antiprotons
- Continuous antiproton beam of 10^11/s
- Fixed target : pellets of frozen hydrogen or gas jet, nuclear targets
- 2 10^7 annihilations/s
- Two stage spectrometer
- DAQ: dead time less, trigger less

PANDA experimer Detectors:

- Physics: Strong interaction studies with antiproto
- Continuous antiproton beam of 10^11 /s
- Fixed target : pellets of frozen hydrogen or gas je
- 2 10^7 annihilations/s
- Commissioning 2014 ?
- DAQ: dead time less & trigger less

- Silicon Pixel & Strip tracker
- Straw trackers
- TPC tracker
- GEM tracker
- Electro-magnetic calorimeters
- Muon detectors
- DIRC detectors
- ≻ ToF

Motivation for TRIGGER less DAQ

- Wide physics cases different criteria for event selection
- Complicated event selection criteria
 - Identification of short lived particles Impact Parameter
 - photon clusters in EMC with veto of charged particles in front e.g. η_c
 - Electron identification
 - Particle ID in MVD, TPC/Straw detectors (dE/dX)
 - Cherenkov PID
 - Λ reconstruction
 - Muon Identification
 - ...

Almost every detector is needed for trigger decision

Classical DAQ

Trigger latency about 100 - 500 ns (40-130 m)

more than 1000 destinations

DAQ architecture

CMS, COMPASS

ATLAS, LHCb

What does it mean "trigger less DAQ" ?

- No electrical or optical trigger signal
- Global clock
- Each channel detects signal -> time stamps it -> sends out

Checker (inor stan 10us/event)

Trigger less DAQ

PANDA DAQ

Motivation for trigger less readout

Other reasons:

- Technologically Feasible
- Trigger => online data processors
- Online software ⇔ Offline software

Trigger less FEE => Logical step in development

But requires development of new ASICs

Front-end electronics

MicroVerexDetector

Pixel	TOPIX(INFN)	6 ns , ToT
Strip	FAIR-XYTER (GSI)	3 ns , Peak Detector
TPC	FAIR-XYTER/SuperALTRO(CERN))
Planar GEM	FAIR-XYTER	
StrawTubeTracker	Amp + discr + TDC	2 ns , ToT
MDC – Straw Tubes	Amp + discr + TDC	2 ns , ToT
Muon Chamber EMC	Amp + discr + TDC	
Barrel/Endcap Forward	APFEL ASIC + Sampling ADC Sampling ADC	pipeline ADC + FPGA pipeline ADC + FPGA
DIRC		
barrel ToP/FDD	Amp + discr + TDC Amp + discr + TDC	100 ps, ToT 40 ps, ToT
TOF	TDC	

TOPIX

FAIR-XYTER chip development

Data driven/self triggering 12mW/channel

Status:

- first submission 2006
- circuit being revised
- next submission 2009

SUPER ALTRO

CERN's ASIC for ILC TPC

- 12 bits
- 20 MSPS
- 32/64 channels/chip
- Interleave options
 - 40-80 MSPS
- Expected power consumption
 - 16mW/channel @20MHz
 - 32mW/channel @40MHz
- To be submitted in 2009

p̃ a n)d a

32/64 channels/chip, CMOS 0.130 μm

Straw FEE

Evaluation of Preamplifier – Shaper – Discriminator chips : CORIOCA CMP16 ASDQ Requirements: 2 ns resolution ToThreshold for dE/dX 5% resolution

APFEL ASIC, EMC APD readout

APFEL ASIC performance

	Requirements	Results @ T = - 20° C	Unit
Noise:	4500	4456 ± 35 🛛 😽	e
Max. input charge:	7	7,84 ± 0,4 🖌	рС
Dyn. range:	10000	10889 ± 251 🚽	1
Integration time:	250	248 ± 3 😽	ns
Event rate:	350	500 🖌	kHz
Power consumption:	60	52 ± 1 😽	mW/Channel

Front-end electronics

MicroVerexDetector

Pixel	TOPIX(INFN)	6 ns , ToT
Strip	FAIR-XYTER (GSI)	3 ns , Peak Detector
TPC	FAIR-XYTER/SuperALTRO(CERN))
Planar GEM	FAIR-XYTER	
StrawTubeTracker	Amp + discr + TDC	2 ns , ToT
MDC – Straw Tubes	Amp + discr + TDC	2 ns , ToT
Muon Chamber EMC	Amp + discr + TDC	
Barrel/Endcap Forward	APFEL ASIC + Sampling ADC Sampling ADC	pipeline ADC + FPGA pipeline ADC + FPGA
DIRC		
barrel ToP/FDD	Amp + discr + TDC Amp + discr + TDC	100 ps, ToT 40 ps, ToT
TOF	TDC	

p a n)d a

Best choice : sampling ADC readout

Another Idea

PANDA detectors hit rate < 200kHz

Use advantage of "low" detector occupancy => analog zero suppression + multiplexer

Hit detection ASIC

Functional description:

- Analog pipeline : switched cap.array runs @10-200MHz or higher
 - converts continuous analog signal into discrete time samples
- hit detection circuit
 - Programmable FIR filter: weights 3 samples and compares with threshold
- Feature extraction is done by external FPGA after digitization
- If runs at 500Mhz then can be used instead of TDC

Read out schemes

Front-end solutions

MicroVerexDetector		
Pixel	TOPIX(INFN)	
Strip	FAIR-XYTER (GSI)	CSA + Hit detection ASIC
TPC - GEM	FAIR-XYTER/SuperALTRO	CSA + Hit detection ASIC
Planar GEM	FAIR-XYTER	CSA + Hit detection ASIC
StrawTubeTracker	CARIOCA/ASDQ +TDC	CSA + Hit detection ASIC
MDC – Straw tubes	CARIOCA(LHC) +TDC	CSA + Hit detection ASIC
Muon Chamber EMC	Amp+Discr.(Minsk)	CSA + Hit detection ASIC
Barrel/endcap	APFEL(GSI) +SADC	CSA + Hit detection ASIC
Forward	SADC	CSA + Hit detection ASIC
DIRC		
barrel	NINO ? + TDC	
ToP/FDD	NINO ? + TDC	
TOF	TDC	

HPTDC

CERN development for LHC experiments Trigger driven

Bin size 100/25 ps Resolution 25 ps 32/8 channels/chip 0.25u technology - radiation tolerant 2MHz/channel hit rate capability

Trigger less readout: generate 1MHz trigger signal

GET4 TDC

- Very high time resolution < 25ps
- Double hit resolution < 5ns
- Event rate up to 50 kHz per channel
- Capability to measure time over threshold
- Low power consumption with less than 30 mW per channel
- Number of Channels: ~ 65.000
- Triggerless operation:
 - Each event combined with a timestamp
 - Epoche event on timestamp counter overflow
- Timestamp counters of all chips have to run synchronously

GET4 TDC

PANDA TDC solution

- HPTDC for Straw, Muon detectors
- GET4 TDC for DIRCs, TOF

PANDA data rate

	# channels	Hit rate	Data rate
MicroVerexDetector			6 GB/s
Pixel	few M		
Strip	200 k		
StrawTubeTracker	5 k	35 MHz	0.35 GB/s
TPC - GEM	78 k	14 GHz	56 GB/s
Planar GEM	100 k	2 GHz	8 GB/s
MDC – Straw tubes	15 k	~2 GHz	20 GB/s
EMC			
Barrel/endcap	15 k	0.5 GHz	8/2 GB/s
Forward	1.5 k	1 GHz	16/4 GB/s
DIRC			
barrel	5 k	1 GHz	4 GB/s
ToP/FDD	1k/4k	5 GHz	20 GB/s
		Total:	140/120 GB/s

Compare rates

DAQ Architecture

1000 data sources

Data processing

- FEE-Data concentrator
 - Feature extraction : time & amplitude
 - Clusterization
 - Time ordering
 - Slicing continuous data stream into data blocks
- Burst builder
 - Deliver data of one burst to one Compute Node
- Compute Node or Computer farms
 - All other tasks

Slicing Data in time

• Slicing synchronously with HESR

HESR duty cycle: 2us beam + 400 ns gap Burst block size ~300 kB Big Block size fluctuation – 20/40 events

Detector's drift time < 200 ns but TPC Tdrift = 50 us

• Super burst of 500 us

TPC data at boundaries copied to both data blocks Super block size ~60 MB Advantage: small variation of block sizes

SODA functionality

- Provision of clock reference < 20ps
- Synchronization with HESR operation
 - Burst or super burst
- Monitoring status of FE and DAQ components
- Data flow control
 - Define switch topology

DAQ electrical-mechanical standard

ATCA (Advanced Telecommunication Computing Architecture) 8U module 322x280 mm² Power redundant 48V, 150W/module

Backplane - high speed point to point connections :

- double star 2 HUB modules to all others
- full mesh every module to any other module

SODA architecture

- Mounted directly on Data Concentrator module
- Lattice ECP2M FPGA SERDES
- Optical transceiver BIDI 1490/1310nm

THANK YOU

COMPASS RICH1 before upgrade

Large acceptance

H: 500 mrad V: 400 mrad Radiator gas: C4F10 PID: π, p, K in 5-50 GeV range Photon detection: MWPC with Csl coating,

Detected photons with $\lambda = 160-200$ nm

MWPC:

8 chambers , 144x72 pads each 80 000 pads(8x8mm2) read by GASSIPLEX FE chip

FEE: APV25-S1 - generic ASIC

APV25-S1 developed for CMS silicon μ -strip detectors

Features:

- 128 channels
- analog pipeline (SCA) runs with 40MHz clock
- 1 or 3 samples /event

- 50 ns peaking time
- external trigger
- no zero suppression

- COMPASS : Silicon, GEM, RICH MWPC Csl photo cathodes
- programmable preamplifier and shaper -> peaking time can be programmed between 50 and 300 ns
- 3 or more samples/event -> Pulse Shape Analysis -> Amplitude & Time
- Low cost read out less than 5 Euro/channel

APV25S1 programmable range

Time measurement with APV25-S1

Time measurement:

- a0, a1, a2 sampled by TCS clock (40MHz)
- beam is asynchronous to clock
- 25 ns jitter

a1/a2 vs clock phase

RICH time resolution vs amplitude

Silicon :
$$\sigma$$
 = 2ns
GEM : σ = 10ns

Test setup

- Lattice PCI-e evaluation card
- Optical splitter 1:8
- 2x SODA receivers mounted on evaluation cards

Reference Clock vs Recovered Rx Clock

PASA and ALTRO chips

Developed for ALICE TPC (MWPC) 2003 Preamplifier/Shaper independent chip -PASA ALTRO optimized for low power 10bit ADC 20MSPS - commercial IP core Advanced digital signal processing Pipeline architecture Power consumption 40mW/channel @ 20MHz

Motivation for TRIGGER less DAQ

- Wide physics cases different criteria for event selection
- Complicated event selection criteria
 - Identification of short lived particles Impact Parameter
 - photon clusters in EMC with veto of charged particles in front e.g. η_c
 - Electron identification
 - Particle ID in MVD, TPC/Straw detectors (dE/dX)
 - Cherenkov PID
 - Λ reconstruction
 - Muon Identification
 - ...

Almost every detector is needed for trigger decision

Technical reasons:

- Feasible design of FEE with built-in zero suppression
- Available higher performance and lower power FPGA/CPUs
- High performance networks
- Flexible software trigger algorithms closer to offline data processing Logical step in development of readout systems