Desired FrontEndElectronic for PANDA TOP-DISC DIRC

Avetik Hayrapetyan on behalf of AG. Düren

Workshop on Fast Cherenkov Detectors, DIRC Design May 11-13 2009 Gießen

- Design options in discussions, anticipated Rates
- 2. Candidate Detectors
- 3. Desired Electronics chain
- 4. Conclusions

Design Options currently in discussions

- In current PANDAROOT modelling we assume 960 Channel of MCP-PMT's mounted on the rim of the DISK
- for FEE and DAQ let assume that DIRC has 1024 channels to be digitized/readout
- anticipated tracks per event on DISC are Beam energy/model dependent on average are 1-2(2GeV – 15 GeV Beam)
- anticipated Cherenkov photons per track might reach 20-30
 - (thickness,flatness,roughness,geometry,glue, number of pieces,detector acceptance,Eff...)
- anticipated Event rate at PANDA is in order of 2(HighResolution mode)-20(HighLuminosity mode) Mhz , and if we multiply these numbers we conclude that our FEE should be as fast as possible

Candidate Detectors...Nr1 MCP_PMT

- We have accumulated some experience with these type of MCP's during Test Beam
 the best resolution so far we got is ~90psec(cosmics in Lab)
- there is always "shoulders" on signal shape, which might be explained by Cathode MCP Distanse
- > there is a hope that BINP might produce them in quadratic form, enhancing GeomEff
- the lifetime and radiation hardness are still behind what PANDA requires

Candidate Detectors...Nr1 MCP_PMT

> after amplification the signal could travel a few tens meters till CFD(ORTEC 935)

- but that is not Desirable, we can catch a lot of noise in between
- if we have enough strong signal can we miss the Preamplifier In our chain??? assuming the CFD is placed immediately close to the Detector

Candidate Detectors...Nr2 SiPMT=APD=MPPC

- Warning the right side plot with 70% PDE was too OPTIMISTIC
- There is a report(A. Ronzhin TIPP09) that one can achieve ~50psec time resolution with such a detectors
- the right side configuration might create a hope that we can cover more than mmXmm sizes, but the we have to fight against Background, cooling???, see next page

Candidate Detectors...Nr2 Signals

 Our first view of Russian APD WO Laser light(left), WITH Laser light(Right,409nm,73ps) in 1mVX5ns Tektronix bins

- > even with current size(1X1mm) we have to deal with sizeable Background
- A way to overcame , maybe to use "Light Collectors"
 - (see S. Korpar presentations) or to cool them
 - (see M. Düren presentation for Gießen test on Hamamatsu C10751-03 module)

Candidate Detectors...Nr3 Multi-Channel Hybrid Avalanche Photo-Detector (HAPD)

Hamamatsu Photonics

There is ongoing R&D for Diamond PMT's and they are going to be Candidate Nr4, but the soon we decide about the detector the time to devote on FEE will benefit from that

TOP DIRC possible FEE chain..currently on test stand in LAB

DET MCP-PMT from BINP, Hamamatsu MPPC

- AMP ORTEC VT120,9327
- ➤ CFD ORTEC 934,935
- ➤ TDC CAEN V1290, with HPTDC Chip
- Readout Via Struck SIS3100 Optolink from VME ALL are connected through a few m(total) LEMO cables,NO ASIC yet

TOP DIRC possible FEE ASIC As an example see COMPASS one

TOP DIRC possible FEE ASIC On basis of this one dream about modernised one like

TOP DIRC possible FEE ASIC On basis of this one dream about modernised one like

TOP DIRC possible FEE ASIC On basis of this one dream about modernised one like

TOP DIRC possible FEE ASIC

dream about modernised one like

TOP ASIC

Optical fibre to PANDA DAQ

CERN HPTDC TDC(25ps) or GSI GET4(25ps) or ACAM M-Mode(10ps) bin size

NINO or ORTEC or Hamamatsu developed

MCP or APD or HAPD or Diamond PMT?? All this seems feasible, but there is a second path of development

Buffered Large Analog Bandwidth

High Speed Digitization

- Simulation efforts at U.Chicago indicate that pulse shape digitization at 40 Gs/s would equal or improve on Constant Fraction Discriminator's
- During laser and beam tests, we have built up a library of pulse shapes from the MCP/PMT's using 20 Gs/s to compare with simulation
- Goal is to develop custom digitizer in parallel with the efforts to grow micropore structures on a large scale.
- Working with Gary Varner/Hawaii (Blab chip) and Stefan Ritt/PSI (DRS chip) to study fast digitizers:

BLAB1 2 Gs/s Waveform Digitizing Chip – G. Varner Hawaii

SOURCE E. Ramberg/Fast Timing at Fermilab Test Beam/TIPP09

BLAB1 ASIC studies

BLAB1 -- NIM **A591** (2008) 534

- Comparable performance to best CFD + HPTDC
- MUCH lower power, no need for huge cable plant!
- Using full samples significantly reduces the impact of noise
- Photodetector limited

Being published in NIM, arXiv:0805.2225

Conclusions

- Many Thanks
- Especially to ALL People from whom
- I stole Transparencies!!
- It seems that the FEE we need to
- build the TOP DIRC exist already
- ...unfortunately as a single pieces
- But the feasibility to get it build is high enough

BACKUP

HAPD Front-end Electronics Custom-made ASIC has been developed for

HAPD read out.

Manage ~100K channels

- 18 channels/ASIC chip
- Shaping time 0.3~2.0µsec
- Variable gain 1.25~20
- •Channel-by-channel offset adjustment (+/-200mV)

See poster: S.Nishida "Development of the readout ASIC for the 144ch HAPD for Aerogel **RICH**" (ID:64)

Prototype Module

Photon Counting Electronics: P.C. ASIC Board by Hamamatsu

Preamplifier Array ASIC Chip

Detection of Internally Reflected Cerenkov Light (DIRC)

- Charged particles of same momentum but different mass (e.g., K[§] and ¼[§]) emit Cerenkov light at different angles.
- Detect the emitted photons in 2+ dimensions (x,y,t)

CFD and PMT box

- HV divider + AMP + Discriminator
- Smaller size
 - 29mm[₩]→28mm[₩]
- Prototype
 - Fast AMP (MMIC, 1GHz, x20)
 - Fast comparator (180ps propagation)
 - CFD with pattern delay
- Performance
 - Test pulse
 - ~5ps resolution
 - MCP-PMT
 - σ<40ps
 - Working well

SiPM Results

- SiPM = "Silicon PMT", which is a multi-pixel Geiger mode silicon device for photon counting
- SiPM's used is Hamamatsu MPPC 3 x 3 mm² with 6 x 6 x 16 mm³ poly radiator

• Obtained 48 ps timing resolution per device, even with poor light collection on one device.

See Anatoly Ronzhin poster showing detailed calibration results for MPPC timing^{E. Ramberg/Fast Timing at Fermilab} Test Beam/TIPP09

25

Transmission line readout of MCP/PMT's

- Read out both ends => gives both position and time
- Cover large areas with much reduced channel account (does not scale with area)
- Transmission speed agrees exactly with simulation
- Signal is not degraded over lengths even larger than 70 mm, according to simulation.

E. Ramberg/Fast Timing at Fermilab Test Beam/TIPP09

Charge Sensitive Preamplifier (CSP)

HV Bias controller

32 HV Bias controllers for APD bias 210-410 V

10 bit range programmable via DCS

- Registers of 10 bit range with a bias voltage increment 0.20V/bit in the range of 210-400V
- With typical voltage coefficient of 3.3%/V at gain 50, the APD gain variation can be limited to ~0.66%

Trigger Region Unit

H8500 MCP-PMT Readout

- Integrated photodetector packaging
- Close to the sensor to reduce pickup noise
- Developing techniques for package electronics and PMTs together

Hamamatsu H8500

Custom Hawaii Electronics

2nd Generation Buffered Large Analog Bandwidth (BLAB2)

2 m <

- Custom Waveform Sampler ASIC
- Tuned to 2.5 GS/s for HI-TIDE
- 1.25 μs deep analog buffering
- ~300 MHz input bandwidth
- 16x sensor channels with on-chip amplifiers
- Plus, 1x (no gain) calibration channel for timing.

Timing Algorithm

$$(f \star g)[n] \stackrel{\text{def}}{=} \sum_{m=-\infty}^{\infty} f^*[m] \ g[n+m]$$

- Discrete cross-correlation of sensor channels with the reference channel
- Relate the timing of all channels with the common generated reference pulse
- Algorithm done in software

BLAB2 flexibility

- Extremely flexible readout solution:
 - Variable sampling speed, depth.
 - Being tested at HI-TIDE with drift tubes, PMTs, and MCP_PMT.

Readout System Components

- Up to 8x64 channels per cPCI card
- Very portable DAQ
- Up to 3,584 channels/cPCI crate

Very cost effective, probably ATCA used in actual SuperB (?)

Fast Feature Extraction

Assume: 100kHz singles per pixel

150kHz trigger rate at SUPERB 200ns trigger window (2% occup.) Each 64-chan PMT has ~200k hits/s Each hit = 32 samples * 12bits = 384bits →~77Mbits/s (link is 2.5Gb/s ~ x10 margin) [perhaps 2x PMT/link]

BlackFin DSP

- Pedestal subtract
- Feature extract → T, Q (tentatively allow up to 8x hits in 200ns)
- Time = 2Bytes, Q = 2Bytes

1k PMT * 1.28 hit typ * 4By = **5.12kB/event** Estimate 1.5us/hit processing time, To be evaluated

Highly Integrated Readout

Buffered LABRADOR

TABLE II: BLAB2 ASIC Specifications.

Item	Value	
Photodetector Input Channels	16	
Linear sampling arrays/channel	<u>2</u> •6	
Storage cells/linear array	512 10)24
Sampling speed (Giga-samples/s)	2.0 - 10.0	
Outputs (Wilkinson)	32	

BLAB2 ASIC

HPK H-8500 Readout basis for this next step.