# The PANDA Barrel DIRC Reconstruction methods 

Carsten Schwarz, $\mathbf{E}$ Ein

- Motivation
- Principle of Hough Transformation
- Details
- Position resolution
- Traps...
- PandaRoot simulations
- Time considerations


## Motivation

- Search for a Cherenkov ring reconstruction - fast, to allow triggering, " $3^{\text {rd }}$ trigger level"
- Fit of ring sections
- time consuming ~ 1-10s
- Hough transformation
- simple algorithm, solve a linear eqation system


## Ring images


conic section has 5 degrees of freedom $\mathrm{x}_{\mathrm{m}}, \mathrm{y}_{\mathrm{m}}$, radius, theta, phi

## Ring images



## Combinations...



## Simple case




Perfect circle with 30 photons
$\mathrm{R}=4$
$\mathrm{x}_{\mathrm{m}}=5$
$\mathrm{y}_{\mathrm{m}}=5$
Calculate for all unique combinations of three points the parameters


## Not so simple case <br> overlapping circle reflections

120 photons, smeared



30 photons, smeared

rad


## Difficult case

30 photons, smeared +15 photons noise



30 photons, smeared +30 photons noise





## Traps

solution on two hyperbola branches!

## PandaRoot \& Hough



## PandaRoot \& Hough



## Time



One has to work with subsets of combinations
but which data points are signal, which are noise???

## Summary

- Very good position resolution is mandatory
- for single event PID
- discrimination against noise
- Hough transformation is not fast for $\mathrm{N}_{\mathrm{ph}}=100$
- Alternatives
- Fit
- Pattern lookup in 2D-arrays as function of $\mathrm{p}_{\mathrm{ch}}$, radiator\# (BaBar focusing DIRC)

