Enhancement of quark number susceptibility with an alternative pattern of chiral symmetry breaking in dense matter

> Chihiro Sasaki Technische Universität München

in collaboration with M. Harada and S. Takemoto (Nagoya Univ.) Introduction: what is Quarkyonic Phase for $N_c = 3$?

• 3 phases in large N_c [McLerran-Pisarski (07)]

-3 phases: Polyakov loop $\langle \Phi \rangle$ and baryon number $\langle N_B \rangle \sim e^{(\mu_B - M_B)/T}$.

– "quark-yonic": elementary fermionic excitations at very large μ (quarks) and at moderate μ (baryons).

• chiral & deconf. trs for $N_c = 3$ from PNJL

- "transition" from hadronic to quarkyonic phase for $N_c = 3$?
 - large N_c limit: clear distinction of 2 different confined-phases baryon number density $\langle N_B \rangle = 0$ (mesonic) and $\neq 0$ (quarkyonic) \Rightarrow a rapid increase at $\mu_B = M_B$ in N_B
 - -finite N_c : no clear definition
 - **but** it may separate meson dominant from baryon dominant region \Rightarrow a rapid change in N_B at $n_{\text{meson}}/n_{\text{baryon}} \sim \mathcal{O}(1)$ expected
 - enhancement of baryon number susceptibility in chiral models
 - **Q.** $\mu_{\text{quarkyonic}} \sim \mu_{\text{chiral}}$ or $\mu_{\text{quarkyonic}} < \mu_{\text{chiral}}$?
 - **Q.** meson & baryon mass spectra and χ -sym. breaking/restoration?

An alternative pattern of chiral symmetry breaking

• unorthodox pattern of spontaneous χ SB [Knecht-Stern (94,95), Stern (97,98)]

 $SU(N_f)_L \times SU(N_f)_R \to SU(N_f)_V \times (\mathbb{Z}_{N_f})_A$

discrete symmetry $(Z_{N_f})_A:$ maximal axal subgroup of $SU(N_f)_{L\times R}$

- $-Z_{N_f}$ protects a theory from condensate of quark bilinears $\langle \bar{q}q\rangle$
- -quartic condensations invariant under $SU(N_f)_V$ and Z_{N_f}
- -thus $\langle \bar{q}q\rangle=\mathcal{O}(m_q)$ and $\langle \bar{q}q\bar{q}q\rangle=\mathcal{O}(1)$

Nambu-Goldstone theorem

condition of spontaneous symmetry breaking:

 $\langle 0 | [iQ, \mathcal{O}(x)] | 0 \rangle = \langle 0 | \delta \mathcal{O}(x) | 0 \rangle \neq 0$

possible operators \mathcal{O} ? · · · not only $\bar{q}q$ but $\bar{q}q\bar{q}q$ etc. cf. $\bar{q}q\bar{q}q \sim (\bar{q}q)^2$ factorisation assumption

- no-go theorem at $\mu = 0$ (T = 0 and $T \neq 0$) [Kogan-Kovner-Shifman (99)] $SU(N_f)_L \times SU(N_f)_R \rightarrow SU(N_f)_V \times Z_{N_f}$ is ruled out in QCD. \Leftrightarrow QCD inequalities $|P(x)P(y)| > |A^{\mu}(x)A^{\nu}(y)|$ [Weingarten (83), Witten (83)]
- phase associated with $\langle \bar{q}q\bar{q}q \rangle \neq 0$ and $\langle \bar{q}q \rangle = 0$ at finite μ operators invariant under Z_{N_f} , e.g.

$$-\mathcal{O}_1 = \bar{q}T_a\gamma_\mu(1-\gamma_5)q \cdot \bar{q}T_a\gamma^\mu(1+\gamma_5)q \sim V_\mu V^\mu - A_\mu A^\mu -\mathcal{O}_2 = \bar{q}T_a(1-\gamma_5)q \cdot \bar{q}T_a(1+\gamma_5)q \sim \sigma^2 - \pi^2$$

- scalar diquark & scalar anti-diquark \Rightarrow chiral singlet
- axial-vector diquark & axial-vector anti-diquark \Rightarrow chiral non-singlet

• evidence from dynamical model calculations?

- $O(2) \mod (\text{scalar } \phi = \phi_1 + i\phi_2) \pmod {\text{CJT}}$ [Watanabe-Fukushima-Hatsuda (03)] meta-stable phase where $\langle \phi^2 \rangle \neq 0$ while $\langle \phi \rangle = 0$
- Skyrme model [Park et al. (02), Lee et al. (03)] similar intermediate phase where $\langle \sigma \rangle \neq 0$ but $F_{\pi} \neq 0$

A chiral model for 2- and 4-quark states

- assume any suitable 4-quark operators invariant under Z_{N_f} .
- symmetry breaking pattern:

 $SU(N_f)_L \times SU(N_f)_R \to SU(N_f)_V \times (Z_{N_f})_A \to SU(N_f)_V$

• ingredients

-2-quark state $M \sim \bar{q}q$ and 4-quark state $\Sigma \sim (\bar{q}q)^2$

$$M_{ij} = \frac{1}{\sqrt{2}} \left(\sigma \delta_{ij} + i \phi^a \tau^a_{ij} \right) , \quad \Sigma_{ab} = \frac{1}{\sqrt{3}} \chi \delta_{ab} + \frac{1}{\sqrt{2}} \epsilon_{abc} \psi_c$$

non-singlet under chiral trnsf, and $M \to -M$, $\Sigma \to +\Sigma$ under Z_2

-Lagrangian $\mathcal{L}_{kin} - V$ up to 4th order in the fields:

$$\begin{split} V(M,\Sigma) &= -\frac{m^2}{2} \mathrm{Tr} \left[M M^{\dagger} \right] - \frac{\bar{m}^2}{2} \Sigma_{ab} \Sigma_{ba}^T \\ &+ \frac{\lambda^2}{4} \mathrm{Tr} \left[\left(M M^{\dagger} \right)^2 \right] + \frac{\bar{\lambda}_1^2}{4} \Sigma_{ab} \Sigma_{bc}^T \Sigma_{cd} \Sigma_{da}^T + \frac{\bar{\lambda}_2^2}{4} \left(\Sigma_{ab} \Sigma_{ba}^T \right)^2 \\ &+ g_1 \left(\Sigma_{ab} \mathrm{Tr} \left[T_a M T_b M^{\dagger} \right] + \mathrm{h.c.} \right) + g_2 \Sigma_{ab} \Sigma_{ba}^T \mathrm{Tr} \left[M M^{\dagger} \right] + g_3 \mathrm{Det} \Sigma_{ba}^T \mathrm{Tr} \left[M M^{\dagger} \right] \end{split}$$

phase structure in mean field approximation

- replace fields with their VEV:

$$M_{ij} \sim \sigma \delta_{ij} , \quad \Sigma_{ab} \sim \chi \delta_{ab}$$

- Ginzburg-Landau effective potential

$$V(\sigma,\chi) = \lambda_1 \sigma^4 + \lambda_2 \chi^4 + A\sigma^2 + B\chi^2 + C\sigma^2 \chi + D\chi^3 + F\sigma^2 \chi^2$$

take $\lambda_1 = \lambda_2 = -C = 1$ without loss of generality

$\begin{array}{l} - \text{ 3 phases expected} \\ * \text{ phase I: } \langle \sigma \rangle \neq 0 \And \langle \chi \rangle \neq 0 \Rightarrow SU(2)_V \\ * \text{ phase II: } \langle \sigma \rangle = 0 \And \langle \chi \rangle \neq 0 \Rightarrow SU(2)_V \times Z_2 \\ * \text{ phase III: } \langle \sigma \rangle = 0 \And \langle \chi \rangle = 0 \Rightarrow SU(2)_L \times SU(2)_R \times Z_2 \end{array}$

- phase diagram of $V(\sigma, \chi; D \neq 0, F \neq 0)$

• hypothetical phase diagram in T- μ plane (w/ explicit breaking)

- -2 order parameters: σ (2-quark) and χ (4-quark) \rightarrow 2 phase transitions: restoration of Z_2 and chiral symmetries \rightarrow max. of corresponding susceptibilites
- multiple critical points: χ_B diverges with exponent $\gamma = 2/3$.

baryon number susceptibility

-I-II: χ_B finite but max. (a jump if 1st order) $\cdots \sigma \rightarrow 0$

- II-III: χ_B no much change \cdots no Yukawa term $\overline{N}N\chi$ in phase II (Z₂) true both in standard and mirror assignment of chirality
 - * if standard, the lowest baryon state massless
 - * if mirror and χ -inv. mass $m_0 \neq 0$, massive parity partners: N^+ : nucleon N^- : N'(1535)
- $-\chi_B$ max. along Z_2 restoration line can be interpreted as "quarkyonic transition" for $N_c = 3$

• hadron mass spectra and pion decay constant $(N_f = 2, 3)$		
(I) $\sigma_0 \neq 0, \chi_0 \neq 0$	(II) $\sigma_0 = 0, \chi_0 \neq 0$	$(III) \sigma_0 = \chi_0 = 0$
$SU(N_f)_V$	$SU(N_f)_V \times (Z_{N_f})_A$	$SU(N_f)_L \times SU(N_f)_R$
$\begin{array}{c} m_S \neq 0 , m_P = 0 \\ m_V \neq m_A \end{array}$	$m_S = m_P = 0$ $m_V \neq m_A$	$m_S = m_P$ $m_V = m_A$
$F_{\pi} = \sqrt{\sigma_0^2 + (8/3)\chi_0^2}$	$F_{\pi} = \sqrt{8/3} \chi_0$	no residue
$m_N \neq 0$	(i) standard $(\psi_{R,L} \rightarrow g_{R,L}\psi_{R,L})$ small m_N (ii) mirror $(\psi_{2R,L} \rightarrow g_{L,R}\psi_{2R,L})$? $m_{N^+} \neq m_{N^-} \neq 0$	(i) standard $m_N = 0$ (ii) mirror $m_{N^+} = m_{N^-} \neq 0$

Summary and prospects

- \bullet a chiral model with $SU(N_f)_L \times SU(N_f)_R \times Z_{N_f}$
 - $-\,a$ model for 2- and 4-quark states
 - topology of phase structure
 - enhancement of χ_B associated with Z_{N_f} symmetry restoration
 - hadron masses and pion decay constant

• to be done using effective Lagrangians

- -e.g. linear sigma model plus χ plus nucleons
- chiral restoration of baryons (mirror vs. standard)
- anomaly matching