The equation of state from lattice QCD

Introduction

I Equation of State

II Fluctuations and Correlations Summary and Outlook Edwin Laermann for the RBC-Bielefeld – and hotQCD – – Collaborations at high temperature and/or density

QCD undergoes a transition from the hadronic phase to the quark-gluon plasma

confinement - deconfinement

heavy (static) quark potential

Chiral symmetry restoration $SU_V(N_F) \rightarrow SU_L(N_F) \times SU_R(N_F)$

• at $T > T_c$, chiral symmetry restoration: V = A

• at $T \neq 0$, for spatial correlations: rotational $SO(3) \rightarrow SO(2) \times Z(2)$

$$\Rightarrow V_T \neq V_L, A_T \neq A_L$$
 possible

some technical remarks unavoidable: must control systematic errors !

numerical treatment of QCD \Rightarrow discretize (Euclidean) space-time

 $Z(T,V) = \int \prod_{i=1}^{N_{\tau}N_{\sigma}^3} d\phi(x_i) \exp\left\{-S[\phi(x_i)]
ight\}$

finite yet high-dimensional path integral

 \rightarrow Monte Carlo

- \bullet thermodynamic limit, IR cut-off effects
- \bullet continuum limit, UV cut-off effects
- physical quark masses

numerical effort $\sim (1/m)^p$

$$LT = \frac{N_{\sigma}}{N_{\tau}} \to \infty$$

$$aT = \frac{1}{N_{\tau}} \to 0 \quad \to \text{improved actions}$$

$$m \to m_{\text{phys}} \simeq 0$$

Choice of (improved) fermion actions

• free energy density, for instance (see later): $f/T^4 \sim N_{\tau}^4 \times \text{signal}$

* in the following: p4 (to improve thermodynamics) and fat3 (to improve flavor symmetry) p4fat3 or Naik (to improve thermodynamics) and fat7 (to improve flavor symmetry) and perturbative $O(a^2g^2)$ improvement = asqtad

Simulation parameters

- $N_F = 2 + 1$: two degenerate u/d quarks + strange quark
- RHMC algorithm, exact to machine precision
 - polynomial approximation: 16/10 for light/strange quarks in molecular dynamics
 20/16 for light/strange quarks in heatbath/ Metropolis
 - Hasenbusch trick: light/strange 1:5
 - Sexton/Weingarten in ratio 1:15
- lattice sizes $16^3 \times 4$, $24^3 \times 6$, $32^3 \times 8$ (T > 0) $16^3 \times 32, 24^3 \times 32, 32^3 \times 32, 24^2 \times 32 \times 48$ (T = 0, for scales and normalization)• statistics $\mathcal{O}(10k - 60k)$ for $N_{\tau} = 4$, each $(\beta, \hat{m}_q, \hat{m}_s)$
 - $\mathcal{O}(8k 30k) \qquad \text{for } N_{\tau} = 6, \quad \text{each } (\beta, \hat{m}_q, \hat{m}_s)$ $\mathcal{O}(10k 40k) \qquad \text{for } N_{\tau} = 8, \quad \text{each } (\beta, \hat{m}_q, \hat{m}_s)$ $\mathcal{O}(\geq 5k) \qquad \text{for } T = 0, \quad \text{each } (\beta, \hat{m}_q, \hat{m}_s)$
- "line of constant physics" i.e. constant physical m_K, m_π

I Equation of State

start from energy-momentum tensor $\frac{\Theta_{\mu}^{\mu}(T)}{T^4} = \frac{\epsilon - 3p}{T^4} = T \frac{d}{dT} (p/T^4)$ where $p = \frac{T}{V} \ln Z(T, V) - \lim_{T \to 0} \frac{T}{V} \ln Z(T, V)$ taking care of UV divergencies

thus $\frac{p(T)}{T^4} - \frac{p(T_0)}{T_0^4} = \int_{T_0}^T dT' \frac{1}{T'^5} \Theta^{\mu}_{\mu}(T')$

now $Z(T, V; g, m_l, m_s) = Z(N_\tau, N_\sigma, a; \beta = 6/g^2, \hat{m}_l, \hat{m}_s) \to Z(N_\tau, N_\sigma, a; \beta, m_\pi, m_K)$ and tune bare lattice parameters \hat{m}_l, \hat{m}_s with β such that $m_{\pi,K} = \text{const} \Rightarrow \hat{m}_{l,s}(\beta), a(\beta)$

$$\Rightarrow \qquad \frac{\Theta_{\mu}^{\mu}(T)}{T^{4}} = -R_{\beta}(\beta)N_{\tau}^{4} \left(\left\langle \frac{d\bar{S}}{d\beta} \right\rangle_{T} - \left\langle \frac{d\bar{S}}{d\beta} \right\rangle_{T=0} \right)$$
with
$$R_{\beta}(\beta) = T\frac{d\beta}{dT} = -a\frac{d\beta}{da}$$

furthermore, will need $(\hat{m}_s(\beta) = \hat{m}_l(\beta) \times h(\beta))$

$$R_m(\beta) = \frac{1}{\hat{m}_l(\beta)} \frac{d\hat{m}_l(\beta)}{d\beta} \qquad \qquad R_h(\beta) = \frac{1}{h(\beta)} \frac{dh(\beta)}{dh}$$

action $S = \beta S_G + 2 \hat{m}_l(\beta) \bar{\psi}_l \psi_l + \hat{m}_s(\beta) \bar{\psi}_s \psi_s + \beta$ independent

such that Θ^{μ}_{μ} consists of three pieces (asqtad slightly more complicated)

$$\frac{\Theta_{G}^{\mu\mu}(T)}{T^{4}} = R_{\beta} N_{\tau}^{4} \Delta \langle \bar{S}_{G} \rangle \qquad \text{where } \Delta \langle \mathcal{O} \rangle = \langle \mathcal{O} \rangle_{T=0} - \langle \mathcal{O} \rangle_{T}$$
$$\frac{\Theta_{F}^{\mu\mu}(T)}{T^{4}} = -R_{\beta} R_{m} N_{\tau}^{4} \{ 2 \hat{m}_{l} \Delta \langle \bar{\psi}\psi \rangle_{l} + \hat{m}_{s} \Delta \langle \bar{\psi}\psi \rangle_{s} \}$$
$$\frac{\Theta_{h}^{\mu\mu}(T)}{T^{4}} = -R_{\beta} R_{h} N_{\tau}^{4} \hat{m}_{s} \Delta \langle \bar{\psi}\psi \rangle_{s}$$

need: non-perturbative β functions $R_{\beta}(\beta), R_m(\beta), R_h(\beta)$ "action differences" $\Delta \bar{S}_G, \Delta \langle \bar{\psi}\psi \rangle_{l,s}$

0.05 0.1 0.15 0.2 0.25 0.3 8 0 $r_0 V_{\bar{q}q}(r)$ a [fm] 1.5 6 1.4 4 r_0/r_1 $r_0\sigma^{1/2}$ 1.3 2 3.382 3.43 3 51 1.2 0 3.69 2 %1.1 3.76-2 3.82 3.92 a/r_0 r/r₀ strina 1.0 0.1 0.2 0.3 0.4 0.5 0.7 1.5 0.0 0.6 0.5 0 1 2 2.5 3

★ T = 0 scale taken from $\Upsilon 2S - 1S$ splitting [A. Gray et al.] via the heavy quark potential V(r)

potential well decribed by

$$V(r) = c_0 - \frac{\alpha}{r_{imp}} + \sigma r_{imp} \qquad \text{with} \quad \frac{a}{r_{imp}} = 4\pi \int_{-\pi}^{\pi} \frac{d^3k}{(2\pi)^3} e^{i\vec{k}\vec{r}} \left[4\sum_{i}^{3} \sin^2(ak_i/2) + \frac{1}{3}\sin^4(ak_i/2)\right]^{-1}$$

 $r_0/a \text{ from } r^2 \frac{dV(r)}{dr}\Big|_{r=r_0} = 1.65 \text{ together with } r_0 = 0.469(7) \text{ fm [A. Gray et al.]} \Rightarrow a(\beta)$

 $m_{\pi,K} = \text{const:}$ Line of Constant Physics (LoCP)

Allton inspired parametrization with rational fct. in $\hat{a}(\beta) = R_{\beta}^{(2-loop)}(\beta)/R_{\beta}^{(2-loop)}(\beta = 3.4)$

$$\begin{aligned} \frac{a}{r_0} &= a_r R_{\beta}^{(2-loop)} \frac{1 + b_r \hat{a}^2 + c_r \hat{a}^4 + d_r \hat{a}^6}{1 + e_r \hat{a}^2 + f_r \hat{a}^4} \qquad \Rightarrow \quad R_{\beta} = \frac{r_0}{a} \left(\frac{dr_0/a}{d\beta}\right)^{-1} \\ \hat{m}_l &= a_m R_{\beta}^{(2-loop)} \left(\frac{12b_0}{\beta}\right)^{4/9} \frac{1 + b_m \hat{a}^2 + c_m \hat{a}^4 + d_m \hat{a}^6}{1 + e_m \hat{a}^2 + f_m \hat{a}^4 + g_m \hat{a}^6} \qquad \Rightarrow \quad R_m \end{aligned}$$

results:

 $\Theta^{\mu}_{\mu}(T)/T^4$ (the central quantity)

 \star small discretization effects

* marvellous agreement betweenp4fat3 and asqtad actions

 \star remaining discretization differences in the peak region mainly due to fermionic part Θ_F

putting HRG to scrutiny

 \star reducing discretization effects will lower the crossover temperature by a few MeV

- \star smaller/physical quark masses will raise $\epsilon 3p$ somewhat, but
- \star the number of resonances is more important than the number of light pions

EQCD: 3d effective theory, pert. matching and non-perturbative input Kajantie et al.; Laine, Schröder

good agreement with resummed pert.theory Blaizot et al.

the results:

 \star discretization errors small, good agreement between <code>asqtad</code> and <code>p4fat3</code> actions

- \star integration error: see little bar to the right
- \star in comparison with **Stefan-Boltzmann**: 10 % below at 2 3 T_c
- \star softest point corresponds to $\epsilon \simeq 1 \ {\rm GeV/fm^3}$

vertical lines denote transition region 185 MeV < T < 195 MeV

comparison with chiral condensate and Polyakov loop

- chiral condensate $\langle \bar{\psi}\psi \rangle$ true order parameter in the chiral limit $m_q \to 0$
- Polyakov limit $L \sim \exp(-F_q/T)$ true order parameter in the static quark limit $m_q \to \infty$

– both need renormalization

$$\Delta_{l,s}(T) = \frac{\langle \bar{\psi}\psi \rangle_{l,T} - \frac{m_l}{m_s} \langle \bar{\psi}\psi \rangle_{s,T}}{\langle \bar{\psi}\psi \rangle_{l,0} - \frac{m_l}{m_s} \langle \bar{\psi}\psi \rangle_{s,0}}$$

UV renormalization via normalization of static quark potential

removes additive as well as multiplicative UV divergencies

significant changes in the same temperature regime as EoS

II Fluctuations and Correlations

 \star probe of deconfinement and chiral aspects of the QCD transitions at $\mu_X=0$

 \star related to event-by-event fluctuations in HICs

Taylor expansion

$$\frac{p}{T^4} = \frac{1}{VT^3} \ln Z(T, \mu_u, \mu_d, \mu_s) = \sum_{i,j,k} c_{ijk}(T) \left(\frac{\mu_u}{T}\right)^i \left(\frac{\mu_d}{T}\right)^j \left(\frac{\mu_s}{T}\right)^k$$

with $(\hat{\mu} = \mu/T)$
 $c_{ijk} = \frac{1}{i!j!k!} \frac{\partial^i}{\partial \hat{\mu}_u^i} \frac{\partial^j}{\partial \hat{\mu}_d^j} \frac{\partial^k}{\partial \hat{\mu}_s^k} \left(\frac{p}{T^4}\right)|_{\vec{\mu}=0}$

for instance

with

$$c_{200} = \frac{N_{\tau}}{2N_{\sigma}^3} \left(\frac{1}{4} \left\langle \frac{\partial^2 \ln \det M}{\partial \hat{\mu}_u^2} \right\rangle + \frac{1}{16} \left\langle \left(\frac{\partial \ln \det M}{\partial \hat{\mu}_u} \right)^2 \right\rangle \right)$$
$$\frac{\partial^2 \ln \det M}{\partial \hat{\mu}_u^2} = \operatorname{tr} \left(M^{-1} \frac{\partial^2 M}{\partial \hat{\mu}_u^2} \right) - \operatorname{tr} \left(M^{-1} \frac{\partial M}{\partial \hat{\mu}_u} M^{-1} \frac{\partial M}{\partial \hat{\mu}_u} \right)$$

For degenerate u and d quarks: $\mu_u = \mu_d \equiv \mu_q \implies \text{e.g.} \quad c_{20}^{qs} = c_{200} + c_{020} + c_{110}$ note: $c_{ijk} = 0$ for i + j + k odd because of charge symmetry closer to experiment in terms of B, S, Q quantum numbers

$$\frac{p}{T^4} = \sum_{i,j,k} c_{ijk}^{BSQ}(T) \left(\frac{\mu_B}{T}\right)^i \left(\frac{\mu_S}{T}\right)^j \left(\frac{\mu_Q}{T}\right)^k$$

where
$$\mu_u = \frac{1}{3}\mu_B + \frac{2}{3}\mu_Q$$
 $\mu_d = \frac{1}{3}\mu_B - \frac{1}{3}\mu_Q$ $\mu_s = \frac{1}{3}\mu_B - \frac{1}{3}\mu_Q - \mu_S$
for instance $c_{400}^{BSQ} = \frac{1}{81}\left(c_{40}^{qs} + c_{31}^{qs} + c_{22}^{qs} + c_{13}^{qs} + c_{04}^{qs}\right)$

in both cases:

fluctuations $\chi_2^X \sim \langle N_X^2 \rangle - \langle N_X \rangle^2 \sim c_2$ $\chi_4^X \sim \langle N_X^4 \rangle - 3 \langle N_X^2 \rangle^2 \sim c_4$ correlations $\chi_{11}^{XY} \sim \langle N_X N_Y \rangle - \langle N_X \rangle \langle N_Y \rangle \sim c_{11}$

quark number susceptibilities/fluctuations

 \star some but no large discretization effects

- \star approaching SB limit, in case of light quarks quickly
- \star rapid rise in χ_l signalling liberation of light quarks

 \star slower rise in χ_s , in fact in transition region $\chi_s \simeq 1/2\chi_l$

BQS quantum number susceptibilities/fluctuations

normalized to SB limits $\langle B^2 \rangle = 1/3, \ \langle Q^2 \rangle = 2/3, \ \langle S^2 \rangle = 1$

 \star some but no large discretization effects

 \star approaching SB limit

- \star rapid rise in $\chi_2,$ all quantum numbers B,Q,S
- \star quartic fluctuations χ_4 develop peaks at transition

in fact, with reduced temperature:

$$\tau = \left|\frac{T - T_c}{T_c}\right| - \left(\frac{\mu}{T}\right)^2$$

$$\chi^B_{2n}(\mu=0) \sim \left|\frac{T-T_c}{T_c}\right|^{2-n-\alpha}$$

from scaling of f_{singular} criticality of nearby phase transition at $m_q \to 0$

fluctuation ratios

general picture: right ballpark at low T pronounced cusps at transition

correlations

at high T: for fully uncorrelated quarks

$$\langle BQ \rangle = \left(\frac{1}{3}\right) \cdot \left(\frac{2}{3}\right) + \left(\frac{1}{3}\right) \cdot \left(-\frac{1}{3}\right) + \left(\frac{1}{3}\right) \cdot \left(-\frac{1}{3}\right) = 0$$
$$\langle BS \rangle = \left(\frac{1}{3}\right) \cdot 0 + \left(\frac{1}{3}\right) \cdot 0 + \left(\frac{1}{3}\right) \cdot 0 + \left(\frac{1}{3}\right) \cdot (-1) = -\frac{1}{3}$$

preliminary

further, Taylor coefficients provide a window to, at least, small $\mu \neq 0$ (\rightarrow RHIC, LHC)

e.g.

compressibility

isentropic lines

$$\frac{S}{N_B}(T,\mu_B) = const$$

- For the EoS
 - we are getting to robust numbers
 - further improvements : \rightarrow physical light quark mass $m_q = m_s/20$

 $\rightarrow aT = 1/12$ to control continuum limit $(R_m !)$

- Fluctuations and correlations show
 - qualitative agreement with a hadron resonance gas below transition
 - quark degrees of freedom dominate rather rapidly above the transition
 - Taylor coeff. useful for QCD at (small) finite density (relevant for RHIC, LHC, early universe): \sim get systematics under better control \rightarrow higher orders in Taylor
 - \rightarrow comprehensive attack of the various approaches

- in the long run
 - comparison with chiral fermion discretizations
 - addressing the critical end point (?) in the $T \mu$ phase diagram (\rightarrow FAIR)