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Spectral Analysis of QGP: Theoretical Basis

• QGP consists of deconfined colour charges, hence

∃ colour charge screening for QQ̄ probe

• screening radius rD(T ) decreases with temperature T

• if rD(T ) falls below binding radius ri of QQ̄ state i,

Q and Q̄ cannot bind, quarkonium i cannot exist

• quarkonium dissociation points Ti, from rD(Ti) = ri,

specify temperature of QGP
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Spectral Analysis of QGP: Experimental Basis

• measure quarkonium production in AA collisions as func-
tion of collision energy, centrality, A

• determine onset of (anomalous) suppression for the differ-
ent quarkonium states

• correlate experimental onset points to thermodynamic vari-
ables (temperature, energy density)

• compare thresholds in survival

probabilities Si of states i to

QCD predictions ψψ χc

S i

ε

1
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⇒ direct comparison:

experimental results vs. quantitative QCD predictions
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In-Medium Behaviour of Quarkonia: Theory

Quarkonia:
heavy quark bound states stable under strong decay

heavy: charm (mc ≃ 1.3 GeV), beauty (mb ≃ 4.7 GeV)

stable: Mcc̄ ≤ 2MD and Mbb̄ ≤ 2MB

heavy quarks ⇒ quarkonium spectroscopy via
non-relativistic potential theory

Schrödinger equation














2mc − 1

mc

∇2 + V (r)















Φi(r) = Mi Φi(r)

confining (“Cornell”) potential V (r) = σ r − α

r

string tension σ ≃ 0.2 GeV2, coupling α ≃ π/12, charm
quark mass mc = 1.3 GeV
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⇒ good account of quarkonium spectroscopy

state J/ψ χc ψ′ Υ χb Υ′ χ′
b Υ′′

mass [GeV] 3.10 3.53 3.68 9.46 9.99 10.02 10.26 10.36

∆E [GeV] 0.64 0.20 0.05 1.10 0.67 0.54 0.31 0.20

∆M [GeV] 0.02 -0.03 0.03 0.06 -0.06 -0.06 -0.08 -0.07

radius [fm] 0.25 0.36 0.45 0.14 0.22 0.28 0.34 0.39

NB: error in mass determination ∆M is less than 1 %

Ground states:

tightly bound ∆E = 2MD,B −M0 ≫ ΛQCD, r0 ≪ rh

What happens to binding in QGP?
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Colour screening ⇒ binding weaker and of shorter range

when force range/screening radius

become less than binding radius,

Q and Q̄ cannot “see” each other

⇒ quarkonium dissociation points
0.5 1.0 1.5 T/Tc

1.0

2.0

4

6

8

2

ε/T 4

ψ

χ
c

J/ ψ
r χ

r  (T)D σ

σ

rψ σ

rψ σ

determine temperature, energy density of medium

How to calculate quarkonium dissociation temperatures?

• obtain heavy quark potential V (r, T ) from finite tempera-
ture lattice studies, solve Schrödinger equation

• calculate in-medium quarkonium spectrum σ(ω, T ) directly
in finite temperature lattice QCD
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Heavy Quark Interactions in Finite T Lattice QCD
[Karsch, Kaczmarek, HS - in progress]

Consider free energy with and without color singlet QQ̄ pair

Hamiltonian HQ for QGP with QQ̄:

FQ(r, T ) = −T ln
∫

dΓ exp{−HQ/T}

Hamiltonian H0 for QGP without QQ̄:

F0(T ) = −T ln
∫

dΓ exp{−H0/T}

lattice QCD: free energy difference F (r, T )=FQ(r, T )−F0(T )

internal energy difference U(r, T ) & entropy difference S(r, T )

U(r, T ) = −T 2









∂[F (r, t)/T ]

∂T








= F (r, T ) + TS(r, T )

7



Internal energy (derivative of Z(β) re β)

U(r, T ) = 〈HQ(r, T )〉 − 〈H0(T )〉

for static heavy quarks,HQ contains no kinetic term, so U(r, T )
gives change in potential energy due to presence of QQ̄ pair
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Internal energy (derivative of Z(β) re β)

U(r, T ) = 〈HQ(r, T )〉 − 〈H0(T )〉

for static heavy quarks,HQ contains no kinetic term, so U(r, T )
gives change in potential energy due to presence of QQ̄ pair

at T = 0: U(r, T = 0) = F (r, T = 0) = σr − α

r

for T > Tc & two flavor
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QCD, very much stronger
interaction potential in the
region 0.3 ≤ r ≤ 1.5 fm

why?
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for static QQ̄ pair in a hot QGP (above Tc)

∃ three interaction ranges
Coulomb intermediate

r
r << 1/T r >> 1/T

0
screening

• Coulomb regime: r−1 ≫ T

Coulomb binding much stronger than kinetic energy of
medium

• screening regime: r ≫ T−1 ∼ ξ(T )

separation of QQ̄ is much greater than correlation length
ξ(T ) of medium

• intermediate regime: r ∼ ξ(T )

complex interactions

10



• large distance limit

for r → ∞ (r ≫ T−1):

∃ well-separated polarization clouds,

of radius correlation length ξ(T )
rQ Q

_

ξ

• short distance limit

for r → 0 (r ≪ T−1):

– QQ̄ neutralizes itself & does not see medium

– medium does not see color-neutral QQ̄;

– hence effectively T = 0 and

U
(1)
QQ̄(r, T ) = F

(1)
QQ̄(r, T ) = −4

3

α(r)

r
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• intermediate separation regime

at small r, polarization clouds overlap

r

ξ

Q Q
_

how does this affect binding?

U(r, T ) is sum of QQ̄ interaction and “cloud” energy

concentrate on binding (remove constant U(r → ∞, T )),

consider effective coupling α(r, T ) =
3

4
r2









∂U(r, T )

∂r









at T =0: α(r, T = 0) = α+ σr2

in QGP:

for Tc < T < 2 Tc, ∃ strong enhancement of α
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effective binding in medium
is stronger than in vacuum
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when polarization clouds overlap
∃ “cloud-cloud” binding
in addition to direct QQ̄ binding

similar to parton energy loss
in dense QGP [GW vs. BDMPS]
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to include cloud-cloud binding, must use U(r, T ) = V (r, T ) in
Schrödinger equation; compare to αF (r, T ) to αU(r, T ):
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bare QQ̄ interaction QQ̄ and cloud interactions

illustrate: dissociation in semi-classical approximation

2mc +
p2

mc

+ U(r, T ) = M(r, T )
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uncertainty relation ⇒ p2 ≃ c/r2,

c

mcr2
+ U(r, T ) = K(r) + U(r, T ) = E(r, T )

minimize

E(r, T ) =
c

mcr2
+ U(r, T )

to get

2c

mcr0

= r2
0









∂V (r0, T )

∂T








=

4

3
α(r0, T )

r

U(r,T)

K(r)

E(r,T)

fix c by M(r0, T = 0) = MJ/ψ, solve graphically
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compare kinetic term 2c/mcr to potential term αU(r, T )
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⇒ J/ψ dissociation
at about 1.5 - 2 Tc

state J/ψ χc ψ′

Td/Tc 1.5 − 2.2 1.1 − 1.2 1.0 − 1.1

Digal et al. 2001

Shuryak & Zahed 2004
Wong 2004,...

Alberico et al. 2005,...
Digal et al. 2005

Mocsy & Petreczky 2005,...

• with full cloud-cloud
interaction

• less cloud interaction weakens binding,
reduces dissociation temperatures
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Lattice Studies of Quarkonium Spectrum

Calculate correlation function Gi(τ, T ) for mesonic channel i
determined by quarkonium spectrum σi(ω, T )

G(τ, T ) =
∫

dω σi(ω, T ) K(ω, τ, T )

relates imaginary time τ and cc̄ energy ω through kernel

K(ω, τ, T ) =
cosh[ω(τ − (1/2T ))]

sinh(ω/2T )

invert G(τ, T ) by Maximum Entropy Method (MEM) to
get σ(ω, T ) Asakawa and Hatsuda 2004

Basic Problem:

correlator given at discrete number of lattice points with
limited precision (“mosaic fragments”)
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charmonia quenched:

Umeda et al. 2001
Asakawa & Hatsuda 2004 =⇒
Datta et al. 2004
Iida et al. 2005

Jakovac et al. 2005

charmonia unquenched:

Aarts et al. 2005, 2007
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Present status:

• ground state peak position OK, widths & continuum not,
higher resonances averaged into ground state, continuum

Tentative present summary:

• J/ψ survives up to T ≃ 1.5 − 2.0 Tc

• χc dissociated at or slightly above Tc
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Experimental Consequence: Sequential J/ψ Suppression
Karsch & HS 1991; Gupta & HS 1992; Karsch, Kharzeev & HS 2006

• measured J/ψ’s are about 60% direct 1S, 30% χc decay,
10% ψ′ decay

• narrow excited states → late decay; medium affects excited
states

60 %

30 % 10 %

ψ(2S)
c(1P)χ

J/ ψ (1S)

• remove effects of cold nuclear matter (shadowing, initial
state energy loss, nuclear absorption)
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• remaining J/ψ survival rate should show a sequential re-
duction: first due to ψ′ and χc melting, then later direct
J/ψ dissociation; experimental smearing of steps
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• remaining J/ψ survival rate should show a sequential re-
duction: first due to ψ′ and χc melting, then later direct
J/ψ dissociation; experimental smearing of steps
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⇒

Data

• SPS: Pb-Pb (NA50) and In-In (NA60) at
√
s ≃ 16 GeV;

CNM reference pA at
√
s ≃ 16 GeV [R. Arnaldi 2009]

• RHIC: Au-Au (Phenix) at
√
s ≃ 200 GeV; CNM reference

dAu at
√
s ≃ 200 GeV (run 8) [A. Frawley 2009]
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Conclusions

• with caveats, potential model studies and direct lattice
studies seem to indicate J/ψ survival up to 1.5 - 2 Tc, dis-
sociation of χc and ψ′ just above Tc.

• J/ψ survival is due to stronger cc̄ binding at radii around
0.5 fm, coming from polarization cloud interactions.

• using new cold nuclear matter data, experimental J/ψ sur-
vival seems consistent from SPS to RHIC, for all data
(Pb-Pb, In-In and Au-Au). No suppression up to about
(dN/dη)y=0 ≃ 200, or ǫ0 ≃ 1 GeV/fm3, then uniform de-
crease to about 0.5-0.6

• decisive role of forthcoming LHC data...
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