QCD Plasma Instabilities and Nonthermal Fixed Points

Jürgen Berges

Darmstadt University of Technology

Nonequilibrium dynamics

Relativistic heavy-ion collisions explore strong interaction matter starting from a transient *nonequilibrium* state

Thermalization process?

Schematically:

Characteristic nonequilibrium time scales? Relaxation? Instabilities?

Short-time dynamics

• **Anisotropy** of the stress tensor T_{ii} in the local fluid rest frame:

i) prolate anisotropy
$$\rightarrow T_{zz} \gg T_{xx} \sim T_{yy}$$

ii) oblate anisotropy $\rightarrow T_{xx} \sim T_{yy} \gg T_{zz}$

Isotropization time t_{iso} ? In the absence of nonequilibrium instabilities:

$t_{\rm iso} \sim O(1/g^4 T)$ _____ characteristic momentum of typical excitation

Weibel instability:

Weibel '59; ... Mrowczynski '88, '93, '94; Arnold, Lenaghan, Moore '03; Romatschke, Strickland '03; very many since then...

$t_{\rm iso} \sim O(1/gT)$

Nielsen-Olesen instability:

Nielsen, Olesen '78; Chang, Weiss '79; ... Iwasaki '08; Fujii, Itakura '08 ...

$$t_{\rm iso} \sim O(1/g^{1/2}B^{1/2})$$

"homogeneous" background field

 $\begin{array}{c|cccc} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & &$

Nonperturbative description that contains all possible mechanisms:

Lattice QCD

- Quantum simulation not possible so far (stochastic quantization?)
- Classical-statistical simulation: includes all fluctuations with

 $\langle \{ \ {\it A}(x) \ , \ {\it A}(y) \ \}
angle \gg \langle [\ {\it A}(x) \ , \ {\it A}(y) \]
angle$

- i.e. "occupation numbers" $\gg 1$ (includes, in particular, HTL / Vlasov) physics of nonequilibrium instabilities \rightarrow high occupation numbers
- Classical simulations well tested for quantum evolutions in scalar theories:

Classical-statistical lattice gauge field simulations

Romatschke, Venugopalan (CGC); Berges, Gelfand, Scheffler, Sexty

Wilson action:

$$S[U] = -\beta_0 \sum_{x} \sum_{i} \left\{ \frac{1}{2 \operatorname{Tr} \mathbf{1}} \left(\operatorname{Tr} U_{x,0i} + \operatorname{Tr} U_{x,0i}^{-1} \right) - 1 \right\} \\ +\beta_s \sum_{x} \sum_{i,j \atop i < j} \left\{ \frac{1}{2 \operatorname{Tr} \mathbf{1}} \left(\operatorname{Tr} U_{x,ij} + \operatorname{Tr} U_{x,ij}^{-1} \right) - 1 \right\}$$

Here: $\beta = \beta_0 / \gamma = \beta_s \gamma = 4$, axial-temporal/Coulomb gauge

Initial conditions: Normalized Gaussian probability functional $P[A(t=0), \partial_t A(t=0)]: \langle A(t) A(t') \rangle = \int DA(0) D\partial_t A(0) P[A(0), \partial_t A(0)] A(t) A(t')$

$$\langle |A_j^a(t=0,\vec{k})|^2 \rangle \sim C \exp\left\{-\frac{k_x^2+k_y^2}{2\Delta_z^2}-\frac{k_z^2}{2\Delta_z^2}\right\}$$

with $\Delta \gg \Delta_z$ (extreme anisotropy), $\Delta \sim Q_s$ (CGC type) C is adjusted to obtain a given energy density ε , e.g. $\varepsilon_{RHIC} \sim 5-25$ GeV/fm³

Characteristic time scales fast slow 10¹⁴ 1.0 1/4 10¹² 0.9 ⋇ 10¹⁰ 0.8 (|A(t,p) / A(t=0, p)|² 3 secondary $\Delta/\epsilon^{1/4} = 1$ 0.7 10⁸ 0.6 $\gamma/\epsilon^{1/4}$ 10⁶ 0.5 primary secondary growth rates 0.4 10⁴ 0.3 10² 96) prim. 0.2 prim. 128 10⁰ 0.1 96 primar sec sec. 128` 10⁻² 0.0 1.5 p_z / ε^{1/4} 0.0 0.5 1.0 2.0 2.5 50 100 150 0 $\Delta t \cdot \epsilon^{1/4}$

Here: $\Delta / \epsilon^{1/4} = 1$

Berges, Scheffler, Sexty, PRD 77 (2008) 034504

Inverse primary growth rates: e.g. $\varepsilon_{RHIC} \sim 5-25 \text{ GeV/fm}^3$, $\varepsilon_{LHC} \sim 2 \times \varepsilon_{RHIC}$

fast:

$$\gamma_{\text{max}}^{-1} \simeq 1.2 - 1.8 \,\text{fm/}c \text{ (RHIC)}$$
 $\gamma_{\text{max}}^{-1} \simeq 1.0 - 1.5 \,\text{fm/}c \text{ (LHC)}$
SU(2)

Characteristic time scales

Berges, Scheffler, Sexty, PRD 77 (2008) 034504

Inverse primary growth rates: e.g. $\varepsilon_{RHIC} \sim 5-25 \text{ GeV/fm}^3$, $\varepsilon_{LHC} \sim 2 \times \varepsilon_{RHIC}$ (oblate)

ast:

$$\gamma_{\text{max}}^{-1} \simeq 1.2 - 1.8 \,\text{fm/}c \text{ (RHIC)}$$
 $\gamma_{\text{max}}^{-1} \simeq 1.0 - 1.5 \,\text{fm/}c \text{ (LHC)}$
SU(2)

Comparison SU(2) vs. SU(3)

Berges, Gelfand, Scheffler, Sexty, PLB 677 (2009) 210

$$\gamma_{\text{max. pr.}}^{-1} \simeq 1.6 - 2.4 \text{ fm/c}$$
 (RHIC),
 $\gamma_{\text{max. pr.}}^{-1} \simeq 1.3 - 2.0 \text{ fm/c}$ (LHC). SU(3)

 \Rightarrow SU(3) shows *reduced* primary growth rates by about 25% for given ε

Comparison SU(2) vs. SU(3)

Berges, Gelfand, Scheffler, Sexty, PLB 677 (2009) 210

⇒ Measured in units of the characteristic screening masses $m_{T,SU(2)}$ and $m_{T,SU(3)}$, respectively, the primary growth rate is independent of N_c

• Initial conditions with **faster isotropization/thermalization**?

 $\Delta / \epsilon^{1/4} \ll$ 1 corresponds to rather "homogeneous" field configurations ($\Delta_z / \epsilon^{1/4} \ll$ 1) \rightarrow Nielsen-Olesen?

Pressure

Spatial Fourier transform of the stress tensor $T^{\mu\nu}(x)$: $P_{L}(t,p)$ for $\mu=\nu=3$, $P_{T}(t,p)$

Fast bottom-up isotropization for momenta:

 $p_z \lesssim 1 \; GeV$

'enough' for hydro?

Still far from equilibrium at this stage!

Slow: Kolmogorov wave turbulence

Berges, Scheffler, Sexty, arXiv:0811.4293 [hep-ph]

- Scaling exponent κ close to the perturbative value $\kappa = 4/3$ See however: Arnold, Moore *PRD* 73 (2006) 025006; Mueller, Shoshi, Wong, *NPB* 760 (2007) 145
- Different infrared behavior? Nonthermal IR fixed point? (Infrared occupation number $\sim 1/g^2 \Rightarrow$ strongly correlated)

• Compare scalar (inflaton) instability dynamics

Instability-induced fermion production

Quantum evolution of $SU(2)_L \times SU(2)_R$ linear sigma model (2PI 1/N to NLO):

Berges, Pruschke, Rothkopf, PRD to appear, arXiv:0904.3073 [hep-ph]

- Fermion production proceeds with the maximum primary boson growth rate!
- Fast approach to Fermi-Dirac distribution in the infrared!

• Fast fermion growth induced via boson-fermion loop:

- Scaling behavior at higher momenta (no IR scaling \rightarrow Pauli principle)
- Bosons practically unaffected for Yukawa couplings $\leq O(1)$

→ Instability-induced fermion production can lead to substantial deviations from standard production processes

Quantitatively: **Classical-statistical lattice QCD with** (quantum) **fermions** can be simulated with well established techniques!

Conclusions

• **Plasma instabilities** for CGC type initial conditions ($\Delta / \epsilon^{1/4} = 1$)

 $\gamma_{\text{max. pr.}}^{-1} \simeq 1.6 - 2.4 \text{ fm/c}$ (RHIC), $\gamma_{\text{max. pr.}}^{-1} \simeq 1.3 - 2.0 \text{ fm/c}$ (LHC). **SU(3)**

- 'Bottom-up' isotropization of stress tensor for p
 1 GeV
 i.e. (optimistically) about the range where hydro 'works'
- (Perturbative) Kolmogorov wave turbulence with $\kappa \simeq 4/3$ Nonthermal IR fixed point in QCD?
- Initial conditions with faster isotropization/thermalization? $\rightarrow \Delta \sim O(\Lambda_{QCD})$?
- Instability-induced fermion production can lead to substantial deviations from standard production processes
 - → fast thermalization of low-momentum fermions on time scale of maximum boson growth rate seen in linear sigma model