

Non-Congruent Phase Transitions in Cosmic Matter and Laboratory

Igor Iosilevskiy

Joint Institute for High Temperature (Russian Academy of Science) Moscow Institute of Physics and Technology (State University)

Non-Congruent phase transition – – what does it mean ?

Non-congruence – phase coexistence with different chemical composition !

Evident definition – in terrestrial applications

Non-evident – in interiors of compact stars

Non-evident – in ultra-high energy ion collisions products

<u>The base</u>

Non-Congruent Phase Transition in Uranium Dioxide

Hypothetical severe accident at fast-breeder nuclear reactor

<u>Support</u> Vladimir Fortov (*Russia*) Claudio Ronchi (*Germany*) Boris Sharkov (*Russia*) Dieter Hoffmann (*Germany*)

INTAS 93-66 // ISTC 2107 // CRDF MO-011

<u>Research Programs of</u> <u>Russian Academy of Science:</u>

"Physics and Chemistry of Extreme States of Matter" and "Physics of Compressed Matter and Interiors of Planets" <u>Cooperation</u>

Victor Gryaznov (*Russia*) Eugene Yakub (*Ukraine*) Alexander Semenov (*Russia*) Vladimir Youngman (="=) Lev Gorokhov (="=) Michael Brykin (="=) Andrew Basharin (="=) Michael Zhernokletov (="=) Michael Zhernokletov (="=) Temur Salikhov (*Uzbekistan*) Claudio Ronchi (*JRC, Karlsruhe*) Gerard J. Hyland (*Warwick, UK*)

Non-Congruent Phase Transition in Uranium Dioxide

INTAS Project (1995–2002)

<u>Cooperation</u>: MIPT – IHED RAS – IPCP RAS – OSEU – MPEI ⇔ ITU (JRC, Germany)

Project Coordinator – C. Ronchi (ITU, JRC) ⇔ Project Supervisor – V. Fortov

ISTC Project (2002–2005)

GSI

Institute for Transuranium Elements

IHE

<u>Cooperation</u>: MIPT – IHED RAS – IPCP RAS – ITEP – VNIIEF ⇔ GSI (JRC, Germany)

Project Manager – B. Sharkov (ITEP, Moscow) ⇔ Project Science Supervisor – V. Fortov

ITEP (Moscow)

Two problems in phase transition calculation

Construction of Equation of State (EOS) Phase coexistence parameters calculation

Chosen approach and fundamentals

Sketch of theoretical approach

* Iosilevski I., Yakub E., Hyland G., Ronchi C. Trans. Amer. Nuclear Soc. 81, 122 (1999)

* Iosilevski I., Yakub E., Hyland G., Ronchi C. Int. Journal of Thermophysics 22 1253 (2001)

* Iosilevskiy I., Gryaznov V., Yakub E., Ronchi C., Fortov V. Contrib. Plasma Phys. 43, (2003)

* Ronchi C., Iosilevskiy I., Yakub E. Equation of State of Uranium Dioxide / Springer, Berlin, (2004)

* Iosilevskiy I., Son E., Fortov V. Thermophysics of non-ideal plasmas. MIPT (2000); FIZMATLIT, (2009)

Quasi-chemical representation ("Chemical picture")

Phase coexistence parameters calculation

(two approaches)

Ordinary way:Maxwell ("equal squares") construction{in unique two-phase pressure-density: $P(V)_T$ }Or"Double tangent" construction{in free energies of two phases: $F_1(V) \Leftrightarrow F_2(V)$ }

Congruent evaporation in U-O system <u>does not correspond to the total equilibrium</u> (only to the partial one)

<u>Maxwell approach</u> - should be rejected as non-adequate

Correct approach:

- Gibbs (+ Guggenheim) conditions

Phase equilibrium conditions in reacting Coulomb system

(see for example: Iosilevskiy I., Encyclopedia on low-T plasmas. III-1 (suppl) 2004, P.349-428)

Electrostatics of phase boundaries in Coulomb systems

Electrostatics of Quark-Hadron Interface

Nuclear Crust on Strange Mater

After Fridolin Weber, WEH Seminar, Bad Honnef, 2006

Gibbs - Guggenheim conditions in reacting Coulomb system

Non-congruent evaporation in U-O system (*Gibbs - Guggenheim conditions*)

End-Points of Non-Congruent Phase Transition

<u>NB</u> !

- Point of temperature maximum
- Point of pressure maximum
- Critical point

are three different points !

Non-congruent phase transformation in two-phase region

Oxygen depleted liquid ! *Different stoichiometry*!

Last vapor bubbles in boiling liquid

Oxygen enriched vapor ! Different stoichiometry! Non-congruent evaporation in U – O system

Isotherms in two-phase region

• Isothermal phase transition starts and finishes at *different pressures*

• Isobaric phase transition starts and finishes at *different temperatures*

Chemical composition at coexisting phases

Liquid $(O/U = 2.0) \Leftrightarrow$ Vapor (O/U > 2.0)

Vapor (O/U = 2.0) \Leftrightarrow Liquid (O/U < 2.0)

Non-congruent evaporation in U – O system

Isobaric transition through the two-phase region

EMMI : Cosmic Matter in the Laboratory

Non-congruence in general

Main issue for study of non-congruent evaporation in U–O system

Non-congruence of phase transition in U-O system – – is it an exception or a general rule ?

Non-congruence in H₂O etc... – what does it mean **?**

<u>BASIC STATEMENT</u>: Any phase transition in a system of two or more chemical elements must be <u>non-congruent</u>

Neptune and "hot-water" extrasolar planet GJ436b

Any phase transition in *high-T_high-P* water must be *non-congruent*

Plasma Phase Transitions in H₂ + He plasma

(planetary science)

Contrib. Plasma Phys. 35 (1995) 2, 109-125

Plasma Phase Transition in Fluid Hydrogen-Helium Mixtures

M. SCHLANGES (a), M. BONITZ (b), and A. TSCHTTSCHJAN (b)

Plasma Phase Transitions in H₂ + He plasma

Fig. 7. Coexistence pressure for H-He mixtures for different values of the mixing parameter, for the hydrogen-like plasma phase transition and for the helium-like plasma phase transition.

Thermodynamics of H₂ + He plasma (planetary science)

0

Congruent phase transition in the H₂+ He plasma

Non-Congruent phase transition in the H₂+ He plasma

Thermodynamics of H₂ + He plasma (planetary science)

0

M. SCHLANGES (a), M. BONITZ (b), and A. TSCHTTSCHJAN (b)

Fig. 7. Coexistence pressure for H-He mixtures for different values of the mixing parameter, for the hydrogen-like plasma phase transition and for the helium-like plasma phase transition.

Phase diagram in simple mixture H₂ + He could be complicated due to non-congruence

The question is:

What kind of phase transition one can expect in high-*T* high-*P* complex plasma ? $H_2 + He + H_2O + NH_3 + CH_4...$ at *T* ~ 1 – 20 kK & *P* ~ 1 – 10 Mbar

Typical composition in planetary science

Hypothetical <u>non-congruent</u> plasma phase transition in H₂ + He mixture in interiors of Jupiter and Saturn

The question is:

What kind of phase transition one can expect in high-*T* high-*P* complex plasma ? $H_2 + He + H_2O + NH_3 + CH_4...$ at *T* ~ 1 – 20 kK & *P* ~ 1 – 10 Mbar

We know almost nothing about it, but we should know everything

Cassini-Huygens

Conclusions and **perspectives**

- Non-congruence of phase transitions in H₂ / He mixture can 'provoke' to the H⇔He separation in interiors of <u>Jovian</u> and <u>Extrasolar</u> planets and <u>Brown Dwarfs</u>.
- New experiments are desirable for study of discussed <u>non-congruence</u> for phase transition in H₂ / He / H₂O / NH₃ / CH₄ / mixture.

Hypothetical non-congruent phase transitions (*short list*)

Terrestrial applications:

- Uranium- and Plutonium-bearing compounds:
 - UO₂, PuO₂, UC, UN, ... ets.,
- Metallic alloys: (Li-K-Na,...etc.)
- **Oxides**: (SiO₂...etc.)
- Hydrides of metals (LiH,... etc.)
- Ionic liquids and molten salts:
 alkali halides (NaCl, ... etc.), ammonium halides (NH₄Cl ... etc.)
 - "Dusty" and Colloid plasmas:
 (Coulomb system of macro-ions + Z and micro-ions: +1, -1)

Non-Congruence in Cosmic Matter:

- Plasma Phase Transitions in mixture: H₂/ He /H₂0 / NH₃ / CH₄ in Giant Planets, Brown Dwarfs and Extra-Solar Planets,
- Phase Transitions in White Dwarfs,
- Phase Transitions in Neutron Stars,
- Phase Transitions in "Strange" Stars (quark-hadron transition ... ets.)

Iosilevskiy I. / Int. Congress on Plasma Physics / Fukuoka, Japan, 2008 (J. of Plasma and Fusion Research, 2009)

Non-congruence in exotic situations

Non-congruence in compact stars

The New Physics of Compact Stars

<u>Compact stars</u>

White dwarfs, Neutron stars, "Strange" (quark) stars, Hybrid stars

Рис. 65. Массы планет (в единицах массы Земли) и их среднее расстояние от Солнца [371]

Hybrid ("strange") white dwarfs

Mathews G., Weber F. et al. J. Phys. G, 32, (2006) - White dwarfs with strange-matter cores

Hypothetical phase transitions in interior of compact stars: are they <u>CONGRUENT</u> or <u>NON-CONGRUENT</u> ?

First quark droplets in hadron matter

Last hadron bubbles in quark matter

Structured Mixed Phase Concept \Leftrightarrow "Pasta"

Schematic picture of pasta structures. Phase transition from blue phase (left-bottom) to red phase (right-bottom) is considered.

Pasta structures in compact stars /arXiv:nucl-th/0605075v2 /2006/

Maruyama T., Tatsumi T., Endo T., Chiba S.

Structured Mixed Phase \Leftrightarrow "Pasta" plasma

'Pasta' plasma – hadron-quark phase transition <u>in interior of neutron stars</u> ('Mixed phase' of Glendenning *et al.* 1992)

- Charged quark droplets (rods, slabs) in equilibrium hadron matter
- Charged hadron bubbles (tubes, slabs) in equilibrium quark matter

Fig. 1. Nuclear and quark matter tructures in a $\sim 1.4 M_{\odot}$ neutron star. Typical sizes of structures are $\sim 10^{-14} m$ but have been scaled up to be seen.

Heiselberg and Hjorth-Jensen <u>Phase Transitions in Neutron Stars</u> arXiv:astro-ph/9802028v1 (1998)

T.Maruyama, T.Tatsumi, T.Endo, S.Chiba <u>Pasta structures in compact stars</u>

arXiv:nucl-th/0605075v2 31 (2006)

"Pasta" plasma:- "Spaghetti" phase, "Lasagne" phase

Non-congruence in exotic situations (di scussi on)

Quark-hadron phase transition via "mixed-phase" scenario has the features of non-congruent PT !

Hypothetical phase transitions in ultra-dense matter:

Evaporation of strange lumps in the early Universe *Alcock C., Farhi E.* (*PRD, 1985*) *Alcock C., Olinto A.* (*PRD, 1989*)

Strange matter, a stable form of quark matter containing a large fraction of strange quarks, may have been copiously produced when the Universe had a temperature of ~ 100 MeV. We study the evaporation of lumps of strange matter as the Universe cooled to 1 MeV. Only lumps with baryon number larger than $\sim 10^{-2}$ could survive. This places a severe restriction of scenarios for strange-

Strange matter is a form of quark matter that has been conjectured to be stable at zero temperature. If heated to a temperature $T \ge 2$ MeV, a strange-matter lump evaporates nucleons from its surface. We show that at higher temperatures $T \ge 20$ MeV, strange matter boils, with bubbles of hadronic gas forming and growing throughout the interior. Strange matter, or any other phase which resembles strange matter, could not have survived this process in the early Universe.

Hypothetical phase transitions in ultra-dense matter

are they CONGRUENT or NON-CONGRUENT ?

The problem of non-congruence for the Quark-Hadron phase transition is relevant !

Iosilevskiy I. / Int. Workshop "Physics of HEDM", JINR, Dubna, Russia, 2008

Non-congruence in high-energy collisions

After Markus H. Thoma, SCCS, Moscow, 2005

EMMI : Cosmic Matter in the Laboratory

Hydrodynamics of expanding fireball when it crosses quark-hadron phase boundary depends significantly from the fact – is this phase transition congruent or non-congruent ! EMMI : Cosmic Matter in the Laboratory

The question is:

What kind of phase transition one can expect in high-*T*_high-*P* complex plasma ? SiO₂ + FeO + Al₂O₃ + CaO + . . .

Exploration of the Moon Continues!

LCROSS Lunar CRater Observation and Sensing Satellite

What kind of phase transition one can expect in high- T_high-P complex plasma? SiO₂ + FeO + Al₂O₃ + CaO $T \sim eV \& P \sim GPa$

The question is open

<u>NB</u> !

Phase transition in each constituent (SiO₂, FeO, Al₂O₃, CaO...) must be *non-congruent* !

Phase transitions in the mixture ¹¹ must be *non-congruent* moreover !

Features of isentropic release crossover of non-congruent phase transition boundary

ISTC: UO₂ isochoric heating under heavy ion beam irradiation

"Retrograde regime" – typical scenario for transition through the two-phase region of **non-congruent** phase transformation

EMMI : Cosmic Matter in the Laboratory

Conclusions and **Perspectives**

- Non-congruent phase transition is general phenomenon.

- Non-congruent phase transition is universal phenomenon.

- Non-congruent phase transition is interesting phenomenon.

- It is **promising** to investigate non-congruent phase transitions **experimentally** in particular with **intense laser** and **heavy ion** heating

- It is **promising** to investigate non-congruent phase transitions in **direct numerical simulations** ("numerical experiment") DFT_MD, PIMC, WP_MD...

- If one takes into account hypothetical **non-congruence** of **phase transitions** in **cosmic matter** objects (*planets, compact stars etc.*) he should **revise** totally the **scenario** of all **phase transformations** in these objects.

Non-Congruent Phase Transitions in Cosmic Matter and Laboratory

Thank you!

<u>Support</u>: INTAS 93-66 // ISTC 3755 // CRDF № MO-011-0 // RFBR 06-08-01166, and by **RAS Scientific Programs**

"Physics and Chemistry of Extreme States of Matter" and "Physics of Compressed Matter and Interiors of Planets"

Hypothetical phase transition in H₂/He mixture

Giant planets evolution problem

after Chabrier G., Saumon D., Hubbard W., Lunine J. (SCCS-1992, Rochester)

Cassini-Huygens

Fig. 1. Pressure and density profiles of optimized models of Jupiter (top panel) and Saturn (bottom panel), plotted as a function of mean radius. Discontinuities in the density clearly mark the boundaries of the four layers of the models: rocky core, ice manule, metallic and molecular

Hypothetical phase transitions in interiors of GP-s and BD-s via "additivity approximation"

Presence of helium relax phase transition in hydrogen <> presence of hydrogen relax phase transition in helium

Schlanges M., Bonitz M, Tschetschjan A. Contrib. Plasma Phys. 35 109 (1995)

(*) Pfaffenzeller O. et al. PRL 74 (13) 2599 (1995)

Giant planets interior composition

Five layers (!) model of Saturn's interior

Model Y_0 Y_2 Z_{2-4} P_{1-2} M_{He} , core M_{core}	
$Y_1 = 0.06, Y_2 = 0.25, Z_1 = 0.02, I/R = 2.2$	
MS1 0.267 0.00 0.30 3.0 0.42 10.66 16.18	1 bar 135 K
MS2 0.171 0.00 0.40 3.0 0.64 4.58 8.59	1.601, 10011
MS3 0.225 0.00 0.30 2.0 0.44 9.88 15.06	
MS4 0.133 0.00 0.40 $\blacksquare 2.0$ 0.67 4.02 7.65	
MS5 0.274 0.25 0.30 3.0 0.46 6.33 9.99	
MS6 0.187 0.25 0.40 3.0 0.72 0.05 1.03	
MS7 0.285 0.25 0.25 2.0 0.43 7.34 10.74	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	/lbar, 4′000 K
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5′500 K
$\frac{300}{100} = \frac{300}{100} = $	
MS15 0.249 H ₂ O 5 0.007 0.76 (b)	
$Y_3 = 0.25$	
$Y_1 = 0.10, Y_2 = N \Pi_3 2.2$	
MS16 0.275 CH 3 10.91 16.54	
MS17 0.186 4 3 4.98 9.25 0.23 24 2.39 8 8 Mbar 7/600 k	C 1
MS18 0.234 2 10.22 15.55 0.0 Mbar, 7000 0.0 Mbar, 7	
MS19 0.149 (Fe + NI) 7 4.50 8.45 $e=2$: IR+He - 4 3(6.03) 1 (16 Mber 0/000 K	
MS20 0.282 3 6.69 10.51 (0.09) 8.07 (8.02) (12. noar, synu) 10 MiDal, 9'000 K	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
MS22 0.277 00.21 0.27 2.0 0.56 6.59 9.7 18 Mbar, 9'400 K	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
MS25 0.263 0.25 0.25 1.5 0.66 5.45 8.41	
$MS26 0.327 0.35 0.25 3.0 0.43 7.93 \qquad 11.52$	N.1.1
$MS27 0.287 0.31 0.30 3.0 0.56 4.16 6.89 I = "ICeS" (H_2O, NH_3, CH_4) R = ROCKS + Fe$	+ INI
MS28 0.248 0.35 0.35 3.0 0.71 0.90 2.34	
MS29 0.301 0.35 0.25 2.0 0.57 4.39 6.80 $Y_{\rm e} = \text{mass fraction He}$	
MS30 0.266 0.35 0.30 2.0 0.73 1.36 2.89	
MS31 0.291 0.35 0.25 1.5 0.71 3.13 5.12 7 - mass fraction (HONH CH - Fo	
MS32 0.259 0.35 0.30 1.5 0.87 0.48 1.64 $Z_{i} = 1135511301011(1_{2}O, 1NT_{3}, CT_{4} + PC)$	T NI)

Non-congruent phase transitions in astrophysical objects

H₂O, CH₄, NH₃ in giant planets

After N.Nettelmann, R.Redmer et al. (2007)

Chemical composition of Neptune [1]:

- 56% water
- 36% methane
- -8% ammonia

W. Hubbard. Science, 214 (1981)

"Hot-water" extrasolar planet GJ436b