Complete second-order dissipative relativistic fluid dynamics

Dirk H. Rischke

Institut für Theoretische Physik and Frankfurt Institute for Advanced Studies

Johann Wolfgang Goethe-Universität Frankfurt am Main

with: Barbara Betz, Tomoi Koide, Harri Niemi

thanks to: Ulrich W. Heinz, Giorgio Torrieri, Urs A. Wiedemann

Preliminaries (I)

Tensor decomposition of net charge current and energy-momentum tensor:

1. Net charge current: $N^{\mu} = n \, u^{\mu} + \nu^{\mu}$

$$egin{aligned} &u^{\mu} & ext{fluid 4-velocity}, \ u^{\mu}u_{\mu} = u^{\mu}g_{\mu
u}u^{
u} = 1 \ &g_{\mu
u} \equiv ext{diag}(+,-,-,-) \quad (ext{West coast!!}) \ ext{metric tensor}, \ &n \equiv u^{\mu}N_{\mu} \quad ext{net charge density in fluid rest frame} \ &
u^{\mu} \equiv \Delta^{\mu
u}N_{
u} \quad ext{diffusion current (flow of net charge relative to u^{μ}), $\nu^{\mu}u_{\mu} = 0$ \ &\Delta^{\mu
u} = g^{\mu
u} - u^{\mu}u^{
u} \quad ext{projector onto 3-space orthogonal to u^{μ}, $\Delta^{\mu
u}u_{
u} = 0$ \end{aligned}$$

- 2. Energy-momentum tensor: $T^{\mu
 u} = \epsilon \, u^{\mu}u^{
 u} (p+\Pi) \, \Delta^{\mu
 u} + 2 \, q^{(\mu}u^{
 u)} + \pi^{\mu
 u}$
 - $\epsilon \equiv u^{\mu}T_{\mu
 u}u^{
 u}$ energy density in fluid rest frame
 - *p* pressure in fluid rest frame

 Π bulk viscous pressure, $p+\Pi\equiv -rac{1}{3}\,\Delta^{\mu
u}T_{\mu
u}$

 $egin{aligned} q^\mu &\equiv \Delta^{\mu
u} T_{
u\lambda} u^\lambda & ext{heat flux current (flow of energy relative to } u^\mu), \ q^\mu u_\mu &= 0 \ \pi^{\mu
u} &\equiv T^{<\mu
u>} & ext{shear stress tensor}, \quad \pi^{\mu
u} u_\mu &= \pi^{\mu
u} u_
u &= 0, \ \pi^\mu_{\ \mu} &= 0 \ a^{(\mu
u)} &\equiv rac{1}{2} \left(a^{\mu
u} + a^{
u\mu}
ight) & ext{symmetrized tensor} \end{aligned}$

 $a^{\langle\mu\nu\rangle} \equiv \left(\Delta_{lpha}^{\ \ (\mu}\Delta_{\ \ eta}^{
u)} - rac{1}{3}\,\Delta^{\mu
u}\Delta_{lphaeta}
ight)a^{lphaeta} \,\,\, ext{symmetrized, traceless spatial projection}$

Preliminaries (II)

Fluid dynamical equations:

1. Net charge (e.g., strangeness) conservation:

$$egin{aligned} \partial_\mu N^\mu &= 0 \ & \Longleftrightarrow \dot{n} + n \, heta + \partial \cdot
u = 0 \end{aligned}$$

 $\dot{a} \equiv u^{\mu}\partial_{\mu}a$ convective (comoving) derivative (fluid rest frame, $u^{\mu}_{\mathrm{RF}} \equiv g^{\mu}_{0} \implies$ time derivative, $\dot{a}_{\mathrm{RF}} \equiv \partial_{t}a$) $heta \equiv \partial_{\mu}u^{\mu}$ expansion scalar

2. Energy-momentum conservation:

$$egin{aligned} \partial_\mu T^{\mu
u} &= 0 \ \hline u_
u\,\partial_\mu T^{\mu
u} &= \dot\epsilon + (\epsilon + p + \Pi)\, heta + \partial\cdot q - q\cdot \dot u - \pi^{\mu
u}\,\partial_\mu u \end{aligned}$$

acceleration equation:

$$egin{aligned} &\Delta^{\mu
u}\,\partial^{\lambda}T_{
u\lambda} = 0 & \Longleftrightarrow \ &(\epsilon\!+\!p)\dot{u}^{\mu} =
abla^{\mu}(p\!+\!\Pi)\!-\!\Pi\dot{u}^{\mu}\!-\!\Delta^{\mu
u}\dot{q}_{
u}\!-\!q^{\mu} heta\!-\!q^{
u}\partial_{
u}u^{\mu}\!-\!\Delta^{\mu
u}\,\partial^{\lambda}\pi_{
u\lambda} \end{aligned}$$

 $abla^{\mu} \equiv \Delta^{\mu\nu} \partial_{\nu} \quad \text{ 3-gradient (spatial gradient in fluid rest frame)}$

Preliminaries (III)

Problem:

 $5 ext{ equations, but 15 unknowns (for given <math>u^{\mu}$): ϵ , p, n, Π , $u^{\mu}(3)$, $q^{\mu}(3)$, $\pi^{\mu
u}(5)$

Solution:

- 1. clever choice of frame (Eckart, Landau,...): eliminate ν^{μ} or q^{μ} \implies does not help! Promotes u^{μ} to dynamical variable!
- 2. ideal fluid limit: all dissipative terms vanish, $\Pi = \nu^{\mu} = q^{\mu} = \pi^{\mu\nu} = 0$
 - \implies 6 unknowns: ϵ , p, n, $u^{\mu}(3)$ (not quite there yet...)
 - \implies fluid is in local thermodynamical equilibrium
 - \implies provide equation of state (EOS) $p(\epsilon, n)$ to close system of equations
- 3. provide additional equations for dissipative quantities
 - \implies dissipative relativistic fluid dynamics
 - (a) First-order theories: e.g. generalization of Navier-Stokes (NS) equations to the relativistic case (Eckart, Landau-Lifshitz)
 - (b) Second-order theories: e.g. Israel-Stewart (IS) equations

Preliminaries (IV)

Navier-Stokes (NS) equations:

1. bulk viscous pressure:

$${
m I}_{
m NS}=-\zeta\, heta$$

bulk viscosity

2. heat flux current:

$$q^{\mu}_{
m NS} = rac{\kappa}{eta} rac{n}{eta(\epsilon+p)} \,
abla^{\mu} lpha$$

 $eta \equiv 1/T$ inverse temperature, $lpha \equiv eta \, \mu, \quad \mu$ chemical potential,

 κ thermal conductivity

3. shear stress tensor:

$$\pi^{\mu
u}_{
m NS}=2\,\eta\,\sigma^{\mu
u}$$

 η shear viscosity,

 $\sigma^{\mu
u} =
abla^{<\mu} u^{
u>} \quad ext{shear tensor}$

 $\implies \text{ algebraic expressions in terms of thermodynamic and fluid variables} \\ \implies \text{ simple... but: unstable and acausal equations of motion!!}$

P. Romatschke, U. Romatschke, PRL 99 (2007) 172301 Au+Au @ $\sqrt{s} = 200$ AGeV charged particles, min. bias

H. Song, U.W. Heinz, PRC 78 (2008) 024902

Motivation (II)

Israel-Stewart (IS) equations: second-order, dissipative relativistic fluid dynamics W. Israel, J.M. Stewart, Ann. Phys. 118 (1979) 341

"Simplified" IS equations: e.g. shear stress tensor

$$au_{\pi}\dot{\pi}^{<\mu
u>}+\pi^{\mu
u}=\pi^{\mu
u}_{
m NS}$$

- \implies dynamical (instead of algebraic) equations for dissipative terms!
- $\implies \pi^{\mu\nu}$ relaxes to its NS value $\pi^{\mu\nu}_{\rm NS}$ on the time scale τ_{π}
- \implies stable and causal fluid dynamical equations of motion!

"Full" IS equations:

$$egin{aligned} & au_{\pi}\dot{\pi}^{<\mu
u>}+\pi^{\mu
u}=\pi^{\mu
u}_{
m NS}-rac{\eta}{2eta}\,\pi^{\mu
u}\,\partial_{\lambda}\left(rac{ au_{\pi}}{\eta}\,eta\,u^{\lambda}
ight)+2\, au_{\pi}\,\pi_{\lambda}^{<\mu}\omega^{
u>\lambda} \ & \omega^{\mu
u}\equivrac{1}{2}\,\Delta^{\mulpha}\Delta^{
ueta}\left(\partial_{lpha}u_{eta}-\partial_{eta}u_{lpha}
ight) & ext{ vorticity} \end{aligned}$$

Motivation (III)

 $\Rightarrow \ \ \text{Difference between "simplified" and "full" IS equations:} \\ \ \ \text{the latter include higher-order terms?} \\ \ \ \text{For instance, if} \ \ \frac{\pi^{\mu\nu}}{\epsilon} \sim \delta \ll 1 , \ \ \tau_{\pi} \, \omega^{\mu\nu} \sim \delta \ll 1 \ \implies \tau_{\pi} \, \omega_{\lambda}^{<\mu} \pi^{\nu>\lambda} \frac{1}{\epsilon} \sim \delta^2$

 \implies Goals:

1. What are the correct equations of motion for the dissipative quantities?

 \implies develop consistent power counting scheme

2. Generalization to $\mu \neq 0$ (relevant for FAIR physics!)

 \implies include heat flux q^{μ}

3. Generalization to non-conformal fluids (relevant near T_c !)

 \implies include bulk viscous pressure Π

Results (I)

Power counting:

- 3 length scales: 2 microscopic, 1 macroscopic
 - $ullet ext{ thermal wavelength } \lambda_{ ext{th}} \sim eta \equiv 1/T$
 - $ullet ext{ mean free path } \ell_{ ext{mfp}} \sim \left(\langle \sigma
 angle n
 ight)^{-1}$
 - averaged cross section, $n\sim T^3=eta^{-3}\sim\lambda_{
 m th}^{-3}$ $\langle \sigma \rangle$
 - ullet length scale over which macroscopic fluid fields vary $L_{
 m hydro} \;,\;\; \partial_\mu \sim L_{
 m hydro}^{-1}$

$$egin{aligned} ext{Note:} & ext{since } \eta \sim (\langle \sigma
angle \lambda_{ ext{th}})^{-1} \implies & \left[rac{\ell_{ ext{mfp}}}{\lambda_{ ext{th}}} \sim rac{1}{\langle \sigma
angle n} rac{1}{\lambda_{ ext{th}}} rac{1}{\langle \sigma
angle \lambda_{ ext{th}}} \sim rac{\lambda_{ ext{th}}^3}{\langle \sigma
angle \lambda_{ ext{th}}} \sim rac{\eta}{\langle \sigma
angle \lambda_{ ext{th}}} & rac{\eta}{\langle \sigma
angle \lambda_{ ext{th}}} \sim rac{\eta}{\langle \sigma
angle \lambda_{ ext{th}}} & rac{\eta}{\langle \sigma
angle \lambda_{ ext{th}}} \sim rac{\eta}{\langle \sigma
angle \lambda_{ ext{th}}} & rac{\eta}{\langle \sigma
angle \lambda_{ ext{th}} & rac{\eta}{\langle \sigma
angle \lambda_{ ext{th}} & rac{\eta}{\langle \sigma
angle \lambda_{ ext{th}}} & rac{\eta}{\langle \sigma
angle \lambda_{ ext{th}} & rac{\eta}{\langle \sigma
angle \lambda_{$$

 $\implies \frac{\eta}{2}$ solely determined by the 2 microscopic length scales! Note: similar argument holds for $\frac{\zeta}{s}$, $\frac{\kappa}{\beta s}$

Results (II)

3 regimes:

- $\bullet \ {\rm dilute \ gas \ limit} \quad \frac{\ell_{\rm mfp}}{\lambda_{\rm th}} \sim \frac{\eta}{s} \gg 1 \iff \langle \sigma \rangle \ll \lambda_{\rm th}^2 \implies {\rm weak-coupling \ limit}$
- $ullet extbf{viscous fluids} \quad rac{\ell_{ ext{mfp}}}{\lambda_{ ext{th}}}\sim rac{\eta}{s}\sim 1 \iff \langle\sigma
 angle\sim \lambda_{ ext{th}}^2$

interactions happen on the scale $\lambda_{\mathrm{th}} \implies \mathrm{moderate}\ \mathrm{coupling}$

 $\bullet \ {\rm ideal \ fluid \ limit} \quad \frac{\ell_{\rm mfp}}{\lambda_{\rm th}} \sim \frac{\eta}{s} \ll 1 \iff \langle \sigma \rangle \gg \lambda_{\rm th}^2 \implies {\rm strong-coupling \ limit}$

gradient (derivative) expansion:

$$\ell_{
m mfp}\,\partial_{\mu}\simrac{\ell_{
m mfp}}{L_{
m hydro}}\equiv K\sim\delta\ll 1$$

K Knudsen number

Results (III)

Primary quantities: $\epsilon, p, n, s \iff$ Dissipative quantities: $\Pi, q^{\mu}, \pi^{\mu\nu}$

$${
m If} \quad K\sim \ell_{
m mfp}\,\partial_\mu\sim \delta\ll 1 \;, \; {
m then} \quad {\Pi\over\epsilon}\sim {q^\mu\over\epsilon}\sim {\pi^{\mu
u}\over\epsilon}\sim \delta\ll 1$$

Dissipative quantities are small compared to primary quantities \implies small deviations from local thermodynamical equilibrium!

Note: statement independent of value of $\frac{\zeta}{s}$, $\frac{\kappa}{\beta s}$, $\frac{\eta}{s}$!

 $\begin{array}{ll} \text{Proof:} & \text{Gibbs relation: } \epsilon + p = Ts + \mu n \implies \beta \, \epsilon \sim s \ ! \\ & \text{Estimate dissipative terms by their Navier-Stokes values:} \\ & \Pi \sim \Pi_{\text{NS}} = -\zeta \, \theta \,, \ q^{\mu} \sim q^{\mu}_{\text{NS}} = \frac{\kappa}{\beta} \frac{n}{\beta(\epsilon + p)} \, \nabla^{\mu} \alpha \,, \ \pi^{\mu\nu} \sim \pi^{\mu\nu}_{\text{NS}} = 2 \, \eta \, \sigma^{\mu\nu} \\ & \Longrightarrow \ \frac{\Pi}{\epsilon} \sim -\frac{\zeta}{\beta \, \epsilon} \beta \, \theta \sim -\frac{\zeta}{s} \frac{\beta}{\lambda_{\text{th}}} \frac{\lambda_{\text{th}}}{\ell_{\text{mfp}}} \ell_{\text{mfp}} \, \theta \sim \ell_{\text{mfp}} \, \partial_{\mu} u^{\mu} \sim \delta \,, \\ & \frac{q^{\mu}}{\epsilon} \sim \frac{\kappa}{\beta} \frac{1}{\beta \, \epsilon} \frac{n}{\beta(\epsilon + p)} \, \beta \, \nabla^{\mu} \alpha \sim \frac{\kappa}{\beta \, s} \frac{\beta}{\lambda_{\text{th}}} \frac{\lambda_{\text{th}}}{\ell_{\text{mfp}}} \ell_{\text{mfp}} \, \nabla^{\mu} \alpha \sim \ell_{\text{mfp}} \, \nabla^{\mu} \alpha \sim \delta \,, \\ & \frac{\pi^{\mu\nu}}{\epsilon} \sim 2 \frac{\eta}{\beta \, \epsilon} \, \beta \, \sigma^{\mu\nu} \sim 2 \frac{\eta}{s} \frac{\beta}{\lambda_{\text{th}}} \frac{\lambda_{\text{th}}}{\ell_{\text{mfp}}} \ell_{\text{mfp}} \, \sigma^{\mu\nu} \sim \ell_{\text{mfp}} \, \nabla^{<\mu} u^{\nu>} \sim \delta \,, \end{array}$

Results (IV)

IS equations:

$$\begin{aligned} \tau_{\Pi} \dot{\Pi} + \Pi &= \Pi_{\rm NS} + \tau_{\Pi q} q \cdot \dot{u} - \ell_{\Pi q} \partial \cdot q \\ &- \tau_{\Pi} \frac{\hat{\zeta}_{1}}{\zeta} \Pi^{2} - \tau_{\Pi} \frac{\hat{\zeta}_{2} \beta}{\kappa} q \cdot q - \tau_{\Pi} \frac{\hat{\zeta}_{3}}{2 \eta} \pi^{\mu\nu} \pi_{\mu\nu} \\ \tau_{q} \Delta^{\mu\nu} \dot{q}_{\nu} + q^{\mu} &= q_{\rm NS}^{\mu} - \tau_{q\Pi} \Pi \dot{u}^{\mu} - \tau_{q\pi} \pi^{\mu\nu} \dot{u}_{\nu} \\ &+ \ell_{q\Pi} \nabla^{\mu} \Pi - \ell_{q\pi} \Delta^{\mu\nu} \partial^{\lambda} \pi_{\nu\lambda} + \tau_{q} \omega^{\mu\nu} q_{\nu} \\ &- \tau_{q} \frac{\hat{\kappa}_{1}}{\zeta} q^{\mu} \Pi - \tau_{q} \frac{\hat{\kappa}_{2}}{2 \eta} \pi^{\mu\nu} q_{\nu} \\ \tau_{\pi} \dot{\pi}^{<\mu\nu>} + \pi^{\mu\nu} &= \pi_{\rm NS}^{\mu\nu} + 2 \tau_{\pi q} q^{<\mu} \dot{u}^{\nu>} + 2 \ell_{\pi q} \nabla^{<\mu} q^{\nu>} + 2 \tau_{\pi} \pi_{\lambda}^{<\mu} \omega^{\nu>\lambda} \\ &- 2 \tau_{\pi} \frac{\hat{\eta}_{1}}{2 \eta} \pi_{\lambda}^{<\mu} \pi^{\nu>\lambda} - 2 \tau_{\pi} \frac{\hat{\eta}_{2} \beta}{\kappa} q^{<\mu} q^{\nu>} - 2 \tau_{\pi} \frac{\hat{\eta}_{3}}{\zeta} \Pi \pi^{\mu\nu} \end{aligned}$$

- W. Israel, J.M. Stewart, Ann. Phys. 118 (1979) 341
- W. Israel, J.M. Stewart, Ann. Phys. 118 (1979) 341
- A. Muronga, PRC 76 (2007) 014909 (and parts of $\hat{\zeta}_1$, $\hat{\kappa}_1$, $\hat{\eta}_3$)
- B. Betz, D. Henkel, DHR, Prog. Part. Nucl. Phys. 62 (2009) 556
- B. Betz, T. Koide, H. Niemi, DHR, in preparation

Results (V)

Remarks:

- 1. Structure of second-order terms follows exclusively from Lorentz covariance
- 2. Coefficients can be computed from kinetic theory and Grad's 14-moment method B. Betz, H. Niemi, T. Koide, DHR, in preparation
- 3. R. Baier, P. Romatschke, D.T. Son, A.O. Starinets, M.A. Stephanov, JHEP 0804 (2008) 100: second-order fluid dynamics for conformal fluids (AdS/CFT correspondence) \implies second-order term $\sim \frac{\lambda_1}{\eta^2} \pi_{\lambda}^{<\mu} \pi^{\nu > \lambda} \implies \lambda_1 \equiv \tau_{\pi} \eta \, \hat{\eta}_1$ Note: second-order terms from collision integral $\implies \eta_1 \neq 1!$ cf. M.A. York, G.D. Moore, arXiv:0811.0729
- 4. Coefficients $\hat{\zeta}_1$, $\hat{\zeta}_2$, $\hat{\zeta}_3$, $\hat{\kappa}_1$, $\hat{\kappa}_2$, $\hat{\eta}_1$, $\hat{\eta}_2$, $\hat{\eta}_3$ are (complicated) dimensionless functions of α , β
- 5. Viscosities and thermal conductivity ζ, η, κ, relaxation times τ_Π, τ_q, τ_π, coefficients τ_{Πq}, τ_{qΠ}, τ_{qπ}, τ_{πq}, ℓ_{Πq}, ℓ_{qΠ}, ℓ_{qπ}, ℓ_{πq} are (complicated) functions of α, β, divided by tensor coefficients of second moment of collision integral:
 ~ χ_i(α, β)/⟨σ⟩ → 0 as cross section σ → ∞ ("strong coupling limit"!)
 ⇒ Π = q^μ = π^{μν} → 0 ideal fluid limit!

Results (VI)

- 6. IS equations are formally independent of calculational frame (Eckart, Landau,...), but ...
- 7. Values of coefficients are frame dependent! We have analyzed:
 - (a) Eckart (N) or (net) charge frame: ϵ_0, n_0 : energy density and charge density in local thermodyn. equilibrium
 - (b) Landau (E) or energy frame:

Note: in IS equations $q^\mu \equiv - rac{\epsilon + p}{n} \,
u^\mu$

(c) Tsumura-Kunihiro-Ohnishi (TKO) frame: $\nu^{\mu} = 0, \ \epsilon = \epsilon_0 - 3 \Pi, \ n = n_0$

 $\mu^{\mu} = 0$ $\epsilon = \epsilon$ 2Π m = m

We have checked agreement with the results of **IS** for most coefficients computed by **IS**...

8. R.h.s.: all terms except NS terms are of second order, $\sim \delta^2$ $\implies t < \tau_{\Pi} \sim \tau_q \sim \tau_{\pi}$: dissipative terms relax towards their NS values, $t > \tau_{\Pi} \sim \tau_q \sim \tau_{\pi}$: last terms on r.h.s. and NS terms on l.h.s. largely cancel, second-order terms govern evolution!

$$q^\mu=0\,,\;\epsilon=\epsilon_0\,,\;n=n_0$$

Conclusions and open problems

1. Derived Israel-Stewart (IS) equations from kinetic theory via Grad's 14-moment method \implies new second-order terms!

2. Results consistent with

- R. Baier, P. Romatschke, D.T. Son, A.O. Starinets, M.A. Stephanov, JHEP 0804 (2008) 100 M.A. York, G.D. Moore, arXiv:0811.0729
- 3. Coefficients of terms in IS equations are frame dependent
 ⇒ have (not yet completely) been computed in various frames (Eckart, Landau, TKO)
- 4. Generalization to a system of various particle species (done: quarks, antiquarks, gluons), various conserved charges
 cf. M. Prakash, M. Prakash, R. Venugopalan, G. Welke, Phys. Rept. 227 (1993) 321
 G. Denicol, DHR, in preparation

5. Numerical implementation

E. Molnar, H. Niemi, DHR, in preparation