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Preliminaries (I)

Tensor decomposition of net charge current and energy-momentum tensor:

1. Net charge current: Nµ = n uµ + νµ

uµ fluid 4-velocity, uµuµ = uµgµνuν = 1

gµν ≡ diag(+, −, −, −) (West coast!!) metric tensor,

n ≡ uµNµ net charge density in fluid rest frame

νµ ≡ ∆µνNν diffusion current (flow of net charge relative to uµ), νµuµ = 0

∆µν = gµν − uµuν projector onto 3-space orthogonal to uµ, ∆µνuν = 0

2. Energy-momentum tensor: T µν = ǫ uµuν − (p + Π) ∆µν + 2 q(µuν) + πµν

ǫ ≡ uµTµνu
ν energy density in fluid rest frame

p pressure in fluid rest frame

Π bulk viscous pressure, p + Π ≡ −1
3
∆µνTµν

qµ ≡ ∆µνTνλuλ heat flux current (flow of energy relative to uµ), qµuµ = 0

πµν ≡ T <µν> shear stress tensor, πµνuµ = πµνuν = 0 , πµ
µ = 0

a(µν) ≡ 1
2
(aµν + aνµ) symmetrized tensor

a<µν> ≡
(

∆ (µ
α ∆

ν)
β − 1

3
∆µν∆αβ

)

aαβ symmetrized, traceless spatial projection
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Preliminaries (II)

Fluid dynamical equations:

1. Net charge (e.g., strangeness) conservation:

∂µNµ = 0 ⇐⇒ ṅ + n θ + ∂ · ν = 0

ȧ ≡ uµ∂µa convective (comoving) derivative

(fluid rest frame, uµ
RF ≡ gµ

0 =⇒ time derivative, ȧRF ≡ ∂ta)

θ ≡ ∂µuµ expansion scalar

2. Energy-momentum conservation:

∂µT µν = 0 ⇐⇒ energy conservation:

uν ∂µT µν = ǫ̇ + (ǫ + p + Π) θ + ∂ · q − q · u̇ − πµν ∂µuν = 0

acceleration equation:

∆µν ∂λTνλ = 0 ⇐⇒
(ǫ+p)u̇µ = ∇µ(p+Π)−Πu̇µ −∆µνq̇ν −qµθ−qν∂νu

µ −∆µν ∂λπνλ

∇µ ≡ ∆µν∂ν 3-gradient (spatial gradient in fluid rest frame)
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Preliminaries (III)

Problem:

5 equations, but 15 unknowns (for given uµ): ǫ , p , n , Π , νµ (3) , qµ (3) , πµν (5)

Solution:

1. clever choice of frame (Eckart, Landau,...): eliminate νµ or qµ

=⇒ does not help! Promotes uµ to dynamical variable!

2. ideal fluid limit: all dissipative terms vanish, Π = νµ = qµ = πµν = 0

=⇒ 6 unknowns: ǫ , p , n , uµ (3) (not quite there yet...)

=⇒ fluid is in local thermodynamical equilibrium

=⇒ provide equation of state (EOS) p(ǫ, n) to close system of equations

3. provide additional equations for dissipative quantities

=⇒ dissipative relativistic fluid dynamics

(a) First-order theories: e.g. generalization of Navier-Stokes (NS) equations

to the relativistic case (Eckart, Landau-Lifshitz)

(b) Second-order theories: e.g. Israel-Stewart (IS) equations
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Preliminaries (IV)

Navier-Stokes (NS) equations:

1. bulk viscous pressure: ΠNS = −ζ θ

ζ bulk viscosity

2. heat flux current: qµ
NS =

κ

β

n

β(ǫ + p)
∇µα

β ≡ 1/T inverse temperature,

α ≡ β µ, µ chemical potential,

κ thermal conductivity

3. shear stress tensor: πµν
NS = 2 η σµν

η shear viscosity,

σµν = ∇<µuν> shear tensor

=⇒ algebraic expressions in terms of thermodynamic and fluid variables

=⇒ simple... but: unstable and acausal equations of motion!!
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Motivation (I)
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Motivation (II)

Israel-Stewart (IS) equations: second-order, dissipative relativistic fluid dynamics

W. Israel, J.M. Stewart, Ann. Phys. 118 (1979) 341

“Simplified” IS equations: e.g. shear stress tensor

τππ̇<µν> + πµν = πµν
NS

=⇒ dynamical (instead of algebraic) equations for dissipative terms!

=⇒ πµν relaxes to its NS value πµν
NS on the time scale τπ

=⇒ stable and causal fluid dynamical equations of motion!

“Full” IS equations:

τππ̇<µν> + πµν = πµν
NS − η

2β
πµν ∂λ







τπ

η
β uλ





 + 2 τπ π <µ
λ ων>λ

ωµν ≡ 1

2
∆µα∆νβ (∂αuβ − ∂βuα) vorticity
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Motivation (III)

=⇒ Difference between “simplified” and “full” IS equations:

the latter include higher-order terms?

For instance, if
πµν

ǫ
∼ δ ≪ 1 , τπ ωµν ∼ δ ≪ 1 =⇒ τπ ω <µ

λ πν>λ 1

ǫ
∼ δ2

=⇒ Goals:

1. What are the correct equations of motion for the dissipative quantities?

=⇒ develop consistent power counting scheme

2. Generalization to µ 6= 0 (relevant for FAIR physics!)

=⇒ include heat flux qµ

3. Generalization to non-conformal fluids (relevant near Tc!)

=⇒ include bulk viscous pressure Π
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Results (I)

Power counting:

3 length scales: 2 microscopic, 1 macroscopic

• thermal wavelength λth ∼ β ≡ 1/T

• mean free path ℓmfp ∼ (〈σ〉n)−1

〈σ〉 averaged cross section, n ∼ T 3 = β−3 ∼ λ−3
th

• length scale over which macroscopic fluid fields vary Lhydro , ∂µ ∼ L−1
hydro

Note: since η ∼ (〈σ〉λth)
−1 =⇒

ℓmfp

λth

∼ 1

〈σ〉n
1

λth

∼ λ3
th

〈σ〉λth

∼ λ3
th

〈σ〉λth

∼ η

s

s entropy density, s ∼ n ∼ T 3 = β−3 ∼ λ−3
th

=⇒ η

s
solely determined by the 2 microscopic length scales!

Note: similar argument holds for
ζ

s
,

κ

β s



‘EMMI workshop and XXVI Max Born Symposium – Three Days of Strong Interactions’, Wroclaw, Poland, July 9 – 11, 2009 10

Results (II)

3 regimes:

• dilute gas limit
ℓmfp

λth

∼ η

s
≫ 1 ⇐⇒ 〈σ〉 ≪ λ2

th =⇒ weak-coupling limit

• viscous fluids
ℓmfp

λth

∼ η

s
∼ 1 ⇐⇒ 〈σ〉 ∼ λ2

th

interactions happen on the scale λth =⇒ moderate coupling

• ideal fluid limit
ℓmfp

λth

∼ η

s
≪ 1 ⇐⇒ 〈σ〉 ≫ λ2

th =⇒ strong-coupling limit

gradient (derivative) expansion: ℓmfp ∂µ ∼ ℓmfp

Lhydro

≡ K ∼ δ ≪ 1

K Knudsen number

=⇒ equivalent to k ℓmfp ≪ 1 , k typical momentum scale

R. Baier, P. Romatschke, D.T. Son, A.O. Starinets, M.A. Stephanov, JHEP 0804 (2008) 100

=⇒ separation of macroscopic fluid dynamics (large scale ∼ Lhydro)

from microscopic particle dynamics (small scale ∼ ℓmfp)
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Results (III)

Primary quantities: ǫ , p , n , s ⇐⇒ Dissipative quantities: Π , qµ , πµν

If K ∼ ℓmfp ∂µ ∼ δ ≪ 1 , then
Π

ǫ
∼

qµ

ǫ
∼

πµν

ǫ
∼ δ ≪ 1

Dissipative quantities are small compared to primary quantities

=⇒ small deviations from local thermodynamical equilibrium!

Note: statement independent of value of
ζ

s
,

κ

β s
,

η

s
!

Proof: Gibbs relation: ǫ + p = Ts + µn =⇒ β ǫ ∼ s !

Estimate dissipative terms by their Navier-Stokes values:

Π ∼ ΠNS = −ζ θ , qµ ∼ qµ
NS =

κ

β

n

β(ǫ + p)
∇µα , πµν ∼ πµν

NS = 2 η σµν

=⇒ Π

ǫ
∼ − ζ

β ǫ
β θ ∼ −ζ

s

β

λth

λth

ℓmfp

ℓmfp θ ∼ ℓmfp ∂µuµ ∼ δ ,

qµ

ǫ
∼ κ

β

1

β ǫ

n

β(ǫ + p)
β ∇µα ∼ κ

β s

β

λth

λth

ℓmfp

ℓmfp ∇µα ∼ ℓmfp ∇µα ∼ δ ,

πµν

ǫ
∼ 2

η

β ǫ
β σµν ∼ 2

η

s

β

λth

λth

ℓmfp

ℓmfp σµν ∼ ℓmfp ∇<µuν> ∼ δ , q.e.d.
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Results (IV)

IS equations:

τΠ Π̇ + Π = ΠNS + τΠq q · u̇ − ℓΠq ∂ · q

− τΠ

ζ̂1

ζ
Π2 − τΠ

ζ̂2 β

κ
q · q − τΠ

ζ̂3

2 η
πµνπµν

τq ∆µνq̇ν + qµ = qµ
NS − τqΠ Π u̇µ − τqπ πµν u̇ν

+ ℓqΠ ∇µΠ − ℓqπ ∆µν ∂λπνλ + τq ωµν qν

− τq

κ̂1

ζ
qµ Π − τq

κ̂2

2 η
πµν qν

τπ π̇<µν> + πµν = πµν
NS + 2 τπq q<µu̇ν> + 2 ℓπq ∇<µqν> + 2 τπ π <µ

λ ων>λ

− 2 τπ

η̂1

2 η
π <µ

λ πν>λ − 2 τπ

η̂2 β

κ
q<µqν> − 2 τπ

η̂3

ζ
Π πµν

W. Israel, J.M. Stewart, Ann. Phys. 118 (1979) 341

W. Israel, J.M. Stewart, Ann. Phys. 118 (1979) 341

A. Muronga, PRC 76 (2007) 014909 (and parts of ζ̂1 , κ̂1 , η̂3)

B. Betz, D. Henkel, DHR, Prog. Part. Nucl. Phys. 62 (2009) 556

B. Betz, T. Koide, H. Niemi, DHR, in preparation



‘EMMI workshop and XXVI Max Born Symposium – Three Days of Strong Interactions’, Wroclaw, Poland, July 9 – 11, 2009 13

Results (V)

Remarks:

1. Structure of second-order terms follows exclusively from Lorentz covariance

2. Coefficients can be computed from kinetic theory and Grad’s 14-moment

method B. Betz, H. Niemi, T. Koide, DHR, in preparation

3. R. Baier, P. Romatschke, D.T. Son, A.O. Starinets, M.A. Stephanov, JHEP 0804 (2008) 100:

second-order fluid dynamics for conformal fluids (AdS/CFT correspondence)

=⇒ second-order term ∼ λ1

η2 π <µ
λ πν>λ =⇒ λ1 ≡ τπ η η̂1

Note: second-order terms from collision integral =⇒ η1 6= 1!

cf. M.A. York, G.D. Moore, arXiv:0811.0729

4. Coefficients ζ̂1 , ζ̂2 , ζ̂3 , κ̂1 , κ̂2 , η̂1 , η̂2 , η̂3 are (complicated) dimensionless

functions of α , β

5. Viscosities and thermal conductivity ζ , η , κ , relaxation times τΠ , τq , τπ ,

coefficients τΠq , τqΠ , τqπ , τπq , ℓΠq , ℓqΠ , ℓqπ , ℓπq are (complicated) functions

of α , β, divided by tensor coefficients of second moment of collision integral:

∼ χi(α, β)/〈σ〉 → 0 as cross section σ → ∞ (“strong coupling limit”!)

=⇒ Π = qµ = πµν → 0 ideal fluid limit!
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Results (VI)

6. IS equations are formally independent of calculational frame (Eckart, Lan-

dau,...), but ...

7. Values of coefficients are frame dependent! We have analyzed:

(a) Eckart (N) or (net) charge frame: νµ = 0 , ǫ = ǫ0 , n = n0

ǫ0 , n0: energy density and charge density in local thermodyn. equilibrium

(b) Landau (E) or energy frame: qµ = 0 , ǫ = ǫ0 , n = n0

Note: in IS equations qµ ≡ −ǫ + p

n
νµ

(c) Tsumura-Kunihiro-Ohnishi (TKO) frame: νµ = 0 , ǫ = ǫ0 − 3 Π , n = n0

We have checked agreement with the results of IS for most coefficients com-

puted by IS...

8. R.h.s.: all terms except NS terms are of second order, ∼ δ2

=⇒ t < τΠ ∼ τq ∼ τπ : dissipative terms relax towards their NS values,

t > τΠ ∼ τq ∼ τπ : last terms on r.h.s. and NS terms on l.h.s. largely

cancel, second-order terms govern evolution!
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Conclusions and open problems

1. Derived Israel-Stewart (IS) equations from kinetic theory via

Grad’s 14-moment method =⇒ new second-order terms!

2. Results consistent with

R. Baier, P. Romatschke, D.T. Son, A.O. Starinets, M.A. Stephanov, JHEP 0804 (2008) 100

M.A. York, G.D. Moore, arXiv:0811.0729

3. Coefficients of terms in IS equations are frame dependent

=⇒ have (not yet completely) been computed in various frames

(Eckart, Landau, TKO)

4. Generalization to a system of various particle species

(done: quarks, antiquarks, gluons), various conserved charges

cf. M. Prakash, M. Prakash, R. Venugopalan, G. Welke, Phys. Rept. 227 (1993) 321

G. Denicol, DHR, in preparation

5. Numerical implementation

E. Molnar, H. Niemi, DHR, in preparation


