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QCD symmetries and breaking patterns

Z(3) center symmetry of SU(3)c exact for infinitely heavy quarks

SU(3)L × SU(3)R exact for massless mu,md ,ms
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The 3-flavor QM model

effective chiral theory with quark fields q(x) and meson fields
φa(x) = (σa(x) + iπa(x)), a = 0, . . . 8

(Gell-Mann Levy ’σ’ model)

QM model (Nf = 3)

LQM = q̄ (i∂/− GTa (σa + iγ5πa)) q + Lm; Ta = λa/2

Lm = Tr(∂µφ
†∂µφ)−m2Tr(φ†φ)− λ1[Tr(φ†φ)]2

−λ2Tr(φ†φ)2 + c
“

det(φ) + det(φ†)
”

+Tr[H(φ+ φ†)]; φ = Taφa; H = Taha

only (h0, h3, h8) are non-zero:

h0 6= 0, h3 = h8 = 0→ mu = md = ms

h0 6= 0, h3 = 0, h8 6= 0→ mu = md 6= ms

seven parameters fixed to meson sector in the vacuum

in contrast to the NJL model the QM model is renormalizable
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Location of the CEP

location of the (chiral) CEP strongly depends on the mass of the ’sigma’ meson

PDG: f0(600) mass=(400..1200) MeV → broad resonance

Phase diagram Nf = 3 (µ ≡ µq = µs)
[BJS, M. Wagner, ’09]

Model parameter fitted to (pseudo)scalar meson spectrum:

PDG: f0(600) mass=(400 . . . 1200) MeV→ broad resonance

! influence of existence of CEP!

Example: mσ = 600 MeV (lower lines), 800 and 900 MeV (here Mean-field approximation)

with U(1)A
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Including the ’Polyakov loop’

Polyakov loop variable:

Φ(x) ≡ 1

Nc
〈TrcP(~x)〉 ; P(~x) = P exp

 
i

Z 1/T

0

dτA4(~x , τ)

!
Lagrangian:

LPQM = LQM + q̄γ4A4q − U(Φ, Φ̄)

effective Polyakov loop potentials:

polynomial (Ratti et al. PRD 2006)

Upoly

T 4
= −b2(T )

2
(|Φ|2 + |Φ̄|2)− b3

6

“
Φ3 + Φ̄3

”
+

b4

4
(|Φ|2 + |Φ̄|2)2

with

b2(T ) = a0 + a1

„
T0

T

«
+ a2

„
T0

T

«2

+ a3

„
T0

T

«3

T0 = 270 MeV a0 a1 a2 a3 b3 b4

6.75 -1.95 2.625 -7.44 0.75 7.5

Table 4.1: Parameter set used in [579] for the Polyakov loop potential (4.73, 4.74).

There is a subtlety about the Polyakov loop field, φ, and its conjugate, φ∗, in the presence of
quarks. At zero chemical potential we have φ = φ∗, i.e. the field φ is real, it serves as an order
parameter for deconfinement and a mean-field calculation is straightforward. At non-zero quark
chemical potential, Z(3) symmetry is explicitly broken and φ differs from φ∗ while their thermal
expectation values 〈φ〉 and 〈φ∗〉 remain real [581]. A detailed analysis of the stationary points of
the action under these conditions requires calculations beyond mean field which will be reported
elsewhere [582]. We proceed here, as in [579], by introducing Φ ≡ 〈φ〉 and Φ̄ ≡ 〈φ∗〉 as new
independent field variables which replace φ and φ∗ in Eq. (4.73). This approximate prescription
corresponds to a modified mean-field scheme which can account for the difference between Φ
and Φ̄ in the presence of quarks. The more accurate treatment is under way.

Using standard bosonization techniques, we introduce the auxiliary bosonic fields σ and #π for
the scalar-isoscalar and pseudoscalar-isovector quark bilinears in Eq. (4.70). The expectation
value of the σ field is directly related to the chiral condensate by 〈σ〉 = G〈ψ̄ψ〉 and the gap
equation becomes

m = m0 − 〈σ〉 . (4.75)

Note that 〈σ〉 is negative in our representation, and the chiral (quark) condensate is 〈ψ̄ψ〉 =
〈ψ̄uψu + ψ̄dψd〉.
Before passing to the actual calculations, we summarize basic assumptions behind Eq. (4.70)
and comment on limitations to be kept in mind. The PNJL model reduces gluon dynamics to a)
chiral point couplings between quarks, and b) a simple static background field representing the
Polyakov loop. This picture can be expected to work only within a limited range of temperatures.
At large T , transverse gluons are known to be thermodynamically active degrees of freedom,
but they are ignored in the PNJL model. To what extent this model can reproduce lattice QCD
thermodynamics is nonetheless a relevant question. We can assume that its range of applicability
is, roughly, T ≤ (2 − 3)Tc, based on the conclusion drawn in ref. [583] that transverse gluons
start to contribute significantly for T > 2.5Tc.

4.5.3 Parameter fixing

The parameters of the Polyakov loop potential U are fitted to reproduce the lattice data [584]
for QCD thermodynamics in the pure gauge sector. Minimizing U(Φ, Φ̄, T ) one has Φ = Φ̄ and
the pressure of the pure-gauge system is evaluated as p(T ) = −U(T ) with Φ(T ) determined
at the minimum. The entropy and energy density are then obtained by means of the standard
thermodynamic relations. Fig. 4.16(a) shows the behaviour of the Polyakov loop as a function of
temperature, while Fig. 4.16(b) displays the corresponding (scaled) pressure, energy density and
entropy density. The lattice data are reproduced extremely well using the ansatz (4.73,4.74), with
parameters summarized in Tab. 4.1. The critical temperature T0 for deconfinement appearing
in Eq. (4.74) is fixed at T0 = 270 MeV in the pure gauge sector.

The pure NJL model part of the Lagrangian (4.70) has the following parameters: the “bare”
quark mass m0, a three-momentum cutoff Λ and the coupling strength G. We fix them by
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Figure 4.16: (a): Using the fit of the Polyakov loop (dotted line) to lattice results taken from
[585] in the pure gauge sector (empty symbols), the PNJL model predicts the Polyakov loop
behaviour as a function of temperature in the presence of dynamical quarks (solid line). This
prediction is compared to lattice data in two flavours (full symbols) taken from [586]. (b): Scaled
pressure, entropy density and energy density as functions of the temperature in the pure gauge
sector, compared to the corresponding lattice data taken from Ref. [165].

Λ [GeV] G[GeV−2] m0[MeV]

0.651 10.08 5.5

|〈ψ̄uψu〉|1/3[MeV] fπ[MeV] mπ[MeV]

251 92.3 139.3

Table 4.2: Parameter set used for the NJL model part of the effective Lagrangian (4.70), and
the resulting physical quantities. These values of the parameters yield a constituent quark mass
m = 325 MeV.

reproducing the known chiral physics in the hadronic sector at T = 0: the pion decay constant
fπ, the chiral condensate |〈ψ̄uψu〉|1/3 and the pion mass mπ are evaluated in the model and
adjusted at their empirical values. The results are shown in Tab. 4.2.

4.5.4 Thermodynamics at finite chemical potential

General features

We now extend the model to finite temperature and chemical potentials using the Matsubara
formalism. We consider the isospin symmetric case, with an equal number of u and d quarks
(and therefore a single quark chemical potential µ). The quantity to be minimized at finite
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Including the ’Polyakov loop’
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Table 4.2: Parameter set used for the NJL model part of the effective Lagrangian (4.70), and
the resulting physical quantities. These values of the parameters yield a constituent quark mass
m = 325 MeV.

reproducing the known chiral physics in the hadronic sector at T = 0: the pion decay constant
fπ, the chiral condensate |〈ψ̄uψu〉|1/3 and the pion mass mπ are evaluated in the model and
adjusted at their empirical values. The results are shown in Tab. 4.2.
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General features

We now extend the model to finite temperature and chemical potentials using the Matsubara
formalism. We consider the isospin symmetric case, with an equal number of u and d quarks
(and therefore a single quark chemical potential µ). The quantity to be minimized at finite

164

Jochen Wambach Phases of Strongly-Interacting Matter: the 2+1 PQM model



Including the ’Polyakov loop’

logarithmic (Fukushima PL 2004)

Ulog

T 4
= −1

2
a(T )Φ̄Φ + b(T ) ln

h
1− 6Φ̄Φ + 4

“
Φ3 + Φ̄3

”
− 3

`
Φ̄Φ
´2
i

with

a(T ) = a0 + a1

„
T0

T

«
+ a2

„
T0

T

«2

; b(T ) = b3

„
T0

T

«3

a0 = 3.51 , a1 = −2.47 , a2 = 15.2 , b3 = −1.75

’strong coupling’ (Fukushima PRD 2008)

UFuku

T 4
= − b

T 3

h
54e−a/T ΦΦ̄ + ln

“
1− 6ΦΦ̄− 3(ΦΦ̄)2 + 4(Φ3 + Φ̄3)

”i
with

a = 664MeV , b = (196.2MeV)3

does not contain contributions from transverse gluons

Nf depencence of T0 (Schaefer et al. PRD 2007)

Nf 0 1 2 2+1 3
T0[MeV] 270 240 208 187 178
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Thermodynamic potential

grand canonical potential

Ω(T , µ;σx , σy ,Φ, Φ̄) = U (σx , σy ) + Ωq̄q

`
σx , σy ,Φ, Φ̄

´
+ U

`
Φ, Φ̄

´
mesonic potential

U(σx , σy ) =
m2

2

“
σ2

x + σ2
y

”
− hxσx − hyσy −

c

2
√

2
σ2

xσy

+
λ1

2
σ2

xσ
2
y +

1

8
(2λ1 + λ2)σ4

x +
1

8
(2λ1 + 2λ2)σ4

y

fermionic part

Ωq̄q(σx , σy ,Φ, Φ̄) =

−2T
X

f =u,d,s

Z
d3p

(2π)3

n
ln
h
1 + 3(Φ + Φ̄e−(Eq,f−µf )/T )e−(Eq,f−µf )/T + e−3(Eq,f−µf )/T

i
+ ln

h
1 + 3(Φ̄ + Φe−(Eq,f +µf )/T )e−(Eq,f +µf )/T + e−3(Eq,f +µf )/T

io
mean field approximation

∂Ω

∂σx
=

∂Ω

∂σy
=
∂Ω

∂Φ
=
∂Ω

∂Φ̄

˛̨̨̨
min

= 0
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(pseudo) order parameters

lattice data: Bazavov et al. arXiv:0903.4379 [hep-lat] mπ ∼ 220 MeV
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PQM EoS NF = 2 + 1 µ = 0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5  1  1.5  2  2.5

p/
p S

B

T/Tχ

QM
PQM pol
PQM log
PQM fuku
p4
asqtad

 0

 1

 2

 3

 4

 5

 6

 7

 0.5  1  1.5  2  2.5

(ε
-3

p)
/T

4

T/Tχ

PQM pol
PQM log
PQM fuku
p4
asqtad

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.5  1  1.5  2  2.5

ε/
T

4

T/Tχ

QM
PQM log
PQM fuku
p4
asqtad

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0.5  1  1.5  2  2.5

s/
T

3

T/Tχ

QM
PQM log
PQM fuku
p4
asqtad

Jochen Wambach Phases of Strongly-Interacting Matter: the 2+1 PQM model



PQM EoS NF = 2 + 1 µ = 0
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in-medium meson masses µ = 0

without UA(1) breaking with UA(1) breaking
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PQM Phase diagram NF = 2 + 1

T0 = 200 MeV T0(µ)
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EoS at high temperature

at high temperature: p/T 4 is a polynomial in µ/T

high temperature ↔ ideal relativistic gas

p(T , µ)

T 4 |∞
=

NF

2πT 3

„Z ∞
0

dkk2 ln(1 + z exp {−ε(k)/T})

+

Z ∞
0

dkk2 ln(1 + z−1 exp {−ε(k)/T})
«

; z = exp(µ/T )

QCD at order O(g 2): (NF = 2)

ultra-relativistic limit ε(k) = k

p(T , µ)

T 4 |∞
=

7π2

60
+

1

2

“ µ
T
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+
1

4π2

“ µ
T

”4

−g 2 1
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Taylor expansion

EoS ’only’ requires coeff. at µ = 0 (at least in principle)

Taylor expansion:

p(T , µ)

T 4
=
∞X
n=0

cn(T )
“ µ

T

”n

with cn(T ) =
1

n!

∂n(p(T , µ)/T 4

∂(µ/T )n
|µ=0

high-temperature limit:

c0(T →∞) =
7NcNFπ

2

180

c2(T →∞) =
NcNF

6

c4(T →∞) =
NcNF

12π2

cn(T →∞) = 0 for n > 4
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Thermodynamics for small µ/T

Taylor expansion:

p

T 4
=
∞X
n=0

cn(T )
“ µ

T

”n

' c0 + c2

“ µ
T

”2

+ c4

“ µ
T

”4

+ c6

“ µ
T

”6

+ · · ·

number density:
nq

T 3
= 2c2

“ µ
T

”
+ 4c4

“ µ
T

”3

+ 6c6

“ µ
T

”5

+ · · ·

number susceptibility:
χq

T 2
= 2c2 + 12c4

“ µ
T

”2

+ 30c6

“ µ
T

”4

+ · · ·

lattice results : Miao et al. arXiv:0810.0375 [hep-lat]

Finite density extrapolations Nf = 2 + 1

[F. Karsch, BJS, M. Wagner, J. Wambach; in preparation ’09]

Taylor expansion:

p(T, µ)

T4 =
∞X

n=0

cn(T)
“µ

T

”n
with cn(T) =

1
n!

∂n `p(T, µ)/T4´
∂ (µ/T)n

˛̨̨̨
˛
µ=0

Non-zero density QCD by the Taylor expansion method Chuan Miao and Christian Schmidt
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Figure 1: Taylor coefficients of the pressure in term of the up-quark chemical potential. Results are obtained

with the p4fat3 action onN! = 4 (full) andN! = 6 (open symbols) lattices. We compare preliminary results of
(2+1)-flavor a pion mass of m" ≈ 220 MeV to previous results of 2-flavor simulations with a corresponding
pion mass of mp ≈ 770 [2].

1. Introduction

A detailed and comprehensive understanding of the thermodynamics of quarks and gluons,

e.g. of the equation of state is most desirable and of particular importance for the phenomenology

of relativistic heavy ion collisions. Lattice regularizedQCD simulations at non-zero temperatures

have been shown to be a very successful tool in analyzing the non-perturbative features of the

quark-gluon plasma. Driven by both, the exponential growth of the computational power of re-

cent super-computer as well as by drastic algorithmic improvements one is now able to simulate

dynamical quarks and gluons on fine lattices with almost physical masses.

At non-zero chemical potential, lattice QCD is harmed by the “sign-problem”, which makes

direct lattice calculations with standard Monte Carlo techniques at non-zero density practically

impossible. However, for small values of the chemical potential, some methods have been success-

fully used to extract information on the dependence of thermodynamic quantities on the chemical

potential. For a recent overview see, e.g. [1].

2. The Taylor expansion method

We closely follow here the approach and notation used in Ref. [2]. We start with a Taylor

expansion for the pressure in terms of the quark chemical potentials

p

T 4
= #

i, j,k

c
u,d,s
i, j,k (T )

(µu
T

)i(µd
T

) j (µs
T

)k
. (2.1)

The expansion coefficients c
u,d,s
i, j,k (T ) are computed on the lattice at zero chemical potential, using

stochastic estimators. Some details on the computation are given in [3, 4]. Details on our cur-

rent data set and the number of random vectors used for the stochastic random noise method are

summarized in Table 1.

In Fig. 1 we show results on the diagonal expansion coefficients with respect to the up-quark
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Figure 1: Taylor coefficients of the pressure in term of the up-quark chemical potential. Results are obtained

with the p4fat3 action onN! = 4 (full) andN! = 6 (open symbols) lattices. We compare preliminary results of
(2+1)-flavor a pion mass of m" ≈ 220 MeV to previous results of 2-flavor simulations with a corresponding
pion mass of mp ≈ 770 [2].
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dynamical quarks and gluons on fine lattices with almost physical masses.

At non-zero chemical potential, lattice QCD is harmed by the “sign-problem”, which makes

direct lattice calculations with standard Monte Carlo techniques at non-zero density practically

impossible. However, for small values of the chemical potential, some methods have been success-

fully used to extract information on the dependence of thermodynamic quantities on the chemical

potential. For a recent overview see, e.g. [1].
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Thermodynamics for small µ/T
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Finite density extrapolations Nf = 2 + 1
[F. Karsch, BJS, M. Wagner, J. Wambach; in preparation ’09]
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first three coefficients:

c0: pressure at µ = 0
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Higher-order derivatives

’algorithmic differentiation’: M. Wagner et al ’09
novel AD technique: [M. Wagner, A. Walther, BJS; in preparation ’09]
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Finite µ extrapolations NF = 2 + 1

pressure number suscept.
Pressure Nf = 2 + 1 PQM

µ/T = 0.8 µ/T = µc/Tc
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Susceptibility Nf = 2 + 1 PQM

µ/T = 0.8 µ/T = µc/Tc
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Radius of convergence

Taylor expansion:
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Finite density extrapolations Nf = 2 + 1

[F. Karsch, BJS, M. Wagner, J. Wambach; in preparation ’09]
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Hadronic fluctuations and the QCD critical point 9

•Consequences for the phase diagram: 
the radius of convergence      
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The radius of convergence can 
be estimated from the Taylor 
coefficients of the pressure:
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• for

• for                         is bound               
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The Resonance gas limit:
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look for non-monotonic behavior in the radius of  convergence

[C. Schmidt ’08]

convergence radii:

limited by first-order line?
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Radius of convergence

M. Wagner et al ’09

rn: solid lines ρn : dashed lines
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Summary and Conclusions

findings:

based on relevant symmetries of QCD the PQM model incorporates
chiral symmetry breaking and (stastistical) confinement
parameters determined in the vaccum
location of the CEP depends on σ-mass
lattice EoS and fluctuations at µ = 0 well reproduced by mean-field
approx.
assess properties not easily accessible on the lattice (pole masses,
chiral limit,..)
test latttice procedures for the CEP (convergence of Taylor
expansion)

outlook:

singularity in the complex µ-plane
fluctuations beyond mean-field via RG
transport properties
.....
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