Phases of Strongly-Interacting Matter: the 2+1 PQM model

Jochen Wambach

Institut für Kernphysik TU-Darmstadt, GSI

EMMI workshop, Wrozlaw, July 9, 2009

Phases of Strongly-Interacting Matter: the 2+1 PQM model

Jochen Wambach

Institut für Kernphysik TU-Darmstadt, GSI

EMMI workshop, Wrozlaw, July 9, 2009

Outline

- primer on symmetries
- the PQM model
- comparison the LQCD data
- finite chemical potential
- outlook

collaborators: M. Wagner, B.-J. Schaefer

QCD symmetries and breaking patterns

Z(3) center symmetry of $SU(3)_c$ exact for infinitely heavy quarks $SU(3)_L \times SU(3)_R$ exact for massless m_u, m_d, m_s

Columbia plot'

DARMSTADT

The 3-flavor QM model

effective chiral theory with quark fields q(x) and meson fields $\phi_a(x) = (\sigma_a(x) + i\pi_a(x)), \quad a = 0, \dots 8$ (Gell-Mann Levy ' σ ' model)

QM model $(N_f = 3)$

$$\mathcal{L}_{QM} = \bar{q} \left(i \partial - GT_a \left(\sigma_a + i \gamma_5 \pi_a \right) \right) q + \mathcal{L}_m; \quad T_a = \lambda_a / 2$$

$$\mathcal{L}_m = \operatorname{Tr}(\partial_\mu \phi^\dagger \partial^\mu \phi) - m^2 \operatorname{Tr}(\phi^\dagger \phi) - \lambda_1 [\operatorname{Tr}(\phi^\dagger \phi)]^2$$

$$-\lambda_2 \operatorname{Tr}(\phi^\dagger \phi)^2 + c \left(\det(\phi) + \det(\phi^\dagger) \right)$$

$$+ \operatorname{Tr}[H(\phi + \phi^\dagger)]; \quad \phi = T_a \phi_a; H = T_a h_a$$

only (h_0, h_3, h_8) are non-zero: $h_0 \neq 0, h_3 = h_8 = 0 \rightarrow m_u = m_d = m_s$ $h_0 \neq 0, h_3 = 0, h_8 \neq 0 \rightarrow m_u = m_d \neq m_s$

seven parameters fixed to meson sector in the vacuum

in contrast to the NJL model the QM model is renormalizable

Location of the CEP

location of the (chiral) CEP strongly depends on the mass of the 'sigma' meson

PDG: $f_0(600)$ mass=(400..1200) MeV \rightarrow broad resonance

Including the 'Polyakov loop'

Polyakov loop variable:

$$\Phi(x) \equiv \frac{1}{N_c} \langle Tr_c \mathcal{P}(\vec{x}) \rangle; \qquad \mathcal{P}(\vec{x}) = P \exp\left(i \int_0^{1/T} d\tau A_4(\vec{x},\tau)\right)$$

Lagrangian:

$$\mathcal{L}_{PQM} = \mathcal{L}_{QM} + ar{q} \gamma_4 A_4 q - \mathcal{U}(\Phi, ar{\Phi})$$

effective Polyakov loop potentials:

polynomial (Ratti et al. PRD 2006)

$$\frac{\mathcal{U}_{\mathsf{poly}}}{T^4} = -\frac{b_2(T)}{2}(|\Phi|^2 + |\bar{\Phi}|^2) - \frac{b_3}{6}\left(\Phi^3 + \bar{\Phi}^3\right) + \frac{b_4}{4}(|\Phi|^2 + |\bar{\Phi}|^2)^2$$

with

$$b_2(T) = a_0 + a_1\left(\frac{T_0}{T}\right) + a_2\left(\frac{T_0}{T}\right)^2 + a_3\left(\frac{T_0}{T}\right)^3$$

Including the 'Polyakov loop'

Polyakov loop variable:

$$\Phi(x) \equiv \frac{1}{N_c} \langle Tr_c \mathcal{P}(\vec{x}) \rangle; \qquad \mathcal{P}(\vec{x}) = P \exp\left(i \int_0^{1/T} d\tau A_4(\vec{x},\tau)\right)$$

Lagrangian:

$$\mathcal{L}_{PQM} = \mathcal{L}_{QM} + ar{q}\gamma_4 A_4 q - \mathcal{U}(\Phi,ar{\Phi})$$

effective Polyakov loop potentials:

polynomial (Ratti et al. PRD 2006)

$$\frac{\mathcal{U}_{\mathsf{poly}}}{T^4} = -\frac{b_2(\mathcal{T})}{2}(|\Phi|^2 + |\bar{\Phi}|^2) - \frac{b_3}{6}\left(\Phi^3 + \bar{\Phi}^3\right) + \frac{b_4}{4}(|\Phi|^2 + |\bar{\Phi}|^2)^2$$

with

Including the 'Polyakov loop'

logarithmic (Fukushima PL 2004)

with

$$\frac{\mathcal{U}_{\log}}{T^4} = -\frac{1}{2}a(T)\bar{\Phi}\Phi + b(T)\ln\left[1 - 6\bar{\Phi}\Phi + 4\left(\Phi^3 + \bar{\Phi}^3\right) - 3\left(\bar{\Phi}\Phi\right)^2\right]$$

$$a(T) = a_0 + a_1\left(\frac{T_0}{T}\right) + a_2\left(\frac{T_0}{T}\right)^2; \quad b(T) = b_3\left(\frac{T_0}{T}\right)^3$$

$$a_0 = 3.51 \qquad a_1 = -2.47 \qquad a_2 = 15.2 \qquad b_2 = -1.75$$

'strong coupling' (Fukushima PRD 2008)

$$\frac{\mathcal{U}_{\mathsf{Fuku}}}{\mathcal{T}^4} = -\frac{b}{\mathcal{T}^3} \left[54e^{-a/\mathcal{T}} \Phi \bar{\Phi} + \ln\left(1 - 6\Phi \bar{\Phi} - 3(\Phi \bar{\Phi})^2 + 4(\Phi^3 + \bar{\Phi}^3)\right) \right]$$

with

$$a = 664 \text{MeV}$$
, $b = (196.2 \text{MeV})^3$

does not contain contributions from transverse gluons

 N_f dependence of T_0 (Schaefer et al. PRD 2007)

N _f	0	1	2	2+1	3
$T_0[MeV]$	270	240	208	187	178

Thermodynamic potential

grand canonical potential

 $\Omega(\mathcal{T},\mu;\sigma_x,\sigma_y,\Phi,\bar{\Phi}) = U(\sigma_x,\sigma_y) + \Omega_{\bar{q}q}(\sigma_x,\sigma_y,\Phi,\bar{\Phi}) + \mathcal{U}(\Phi,\bar{\Phi})$ mesonic potential

$$U(\sigma_x, \sigma_y) = \frac{m^2}{2} \left(\sigma_x^2 + \sigma_y^2 \right) - h_x \sigma_x - h_y \sigma_y - \frac{c}{2\sqrt{2}} \sigma_x^2 \sigma_y + \frac{\lambda_1}{2} \sigma_x^2 \sigma_y^2 + \frac{1}{8} \left(2\lambda_1 + \lambda_2 \right) \sigma_x^4 + \frac{1}{8} \left(2\lambda_1 + 2\lambda_2 \right) \sigma_y^4$$

fermionic part

$$\begin{split} \Omega_{\bar{q}q}(\sigma_{x},\sigma_{y},\Phi,\bar{\Phi}) &= \\ -2T \sum_{f=u,d,s} \int \frac{d^{3}p}{(2\pi)^{3}} \left\{ \ln \left[1 + 3(\Phi + \bar{\Phi}e^{-(E_{q,f}-\mu_{f})/T})e^{-(E_{q,f}-\mu_{f})/T} + e^{-3(E_{q,f}-\mu_{f})/T} \right] \right. \\ &+ \left. \ln \left[1 + 3(\bar{\Phi} + \Phi e^{-(E_{q,f}+\mu_{f})/T})e^{-(E_{q,f}+\mu_{f})/T} + e^{-3(E_{q,f}+\mu_{f})/T} \right] \right\} \end{split}$$

mean field approximation

$$\frac{\partial \Omega}{\partial \sigma_x} = \frac{\partial \Omega}{\partial \sigma_y} = \frac{\partial \Omega}{\partial \Phi} = \frac{\partial \Omega}{\partial \bar{\Phi}} \bigg|_{\min} = 0$$

(pseudo) order parameters

lattice data: Bazavov et al. arXiv:0903.4379 [hep-lat] $m_\pi \sim 220~{
m MeV}$

$$\Delta_{l,s} = \frac{\langle \bar{l}l \rangle(T) - \frac{\hat{m}_l}{\hat{m}_s} \langle \bar{s}s \rangle(T)}{\langle \bar{l}l \rangle(T=0) - \frac{\hat{m}_l}{\hat{m}_s} \langle \bar{s}s \rangle(T=0)} \longrightarrow \qquad \Delta_{l,s} = \frac{\sigma_x(T) - \frac{h_x}{h_y} \sigma_y(T)}{\sigma_x(T=0) - \frac{h_x}{h_y} \sigma_y(T=0)}$$

PQM EoS $N_F = 2 + 1$ $\mu = 0$

PQM EoS $N_F = 2 + 1$ $\mu = 0$

in-medium meson masses $\mu = 0$

Jochen Wambach

Phases of Strongly-Interacting Matter: the 2+1 PQM model

PQM Phase diagram $N_F = 2 + 1$

Jochen Wambach

Phases of Strongly-Interacting Matter: the 2+1 PQM model

EoS at high temperature

at high temperature: p/T^4 is a polynomial in μ/T

 $high \ temperature \ \leftrightarrow \ ideal \ relativistic \ gas$

$$\frac{p(T,\mu)}{T^4}\Big|_{\infty} = \frac{N_F}{2\pi T^3} \left(\int_0^\infty dk k^2 \ln(1+z\exp\left\{-\epsilon(k)/T\right\}) + \int_0^\infty dk k^2 \ln(1+z^{-1}\exp\left\{-\epsilon(k)/T\right\}) \right); \qquad z = \exp(\mu/T)$$

QCD at order $O(g^2)$: $(N_F = 2)$ ultra-relativistic limit $\epsilon(k) = k$

$$\frac{p(T,\mu)}{T^{4}}_{\mid\infty} = \frac{7\pi^{2}}{60} + \frac{1}{2}\left(\frac{\mu}{T}\right)^{2} + \frac{1}{4\pi^{2}}\left(\frac{\mu}{T}\right)^{4} \\ -g^{2}\frac{1}{2\pi^{2}}\left(\frac{5\pi^{2}}{36} + \frac{1}{2}\left(\frac{\mu}{T}\right)^{2} + \frac{1}{4\pi^{2}}\left(\frac{\mu}{T}\right)^{4}\right)$$

Taylor expansion

EoS 'only' requires coeff. at $\mu=$ 0 (at least in principle) Taylor expansion:

$$\frac{p(T,\mu)}{T^4} = \sum_{n=0}^{\infty} c_n(T) \left(\frac{\mu}{T}\right)^n \quad \text{with} \quad c_n(T) = \frac{1}{n!} \frac{\partial^n (p(T,\mu)/T^4}{\partial (\mu/T)^n}\Big|_{\mu=0}$$

high-temperature limit:

$$c_0(T \to \infty) = \frac{7N_cN_F\pi^2}{180}$$

$$c_2(T \to \infty) = \frac{N_cN_F}{6}$$

$$c_4(T \to \infty) = \frac{N_cN_F}{12\pi^2}$$

$$c_n(T \to \infty) = 0 \text{ for } n > 4$$

Thermodynamics for small μ/T

Taylor expansion:

$$\frac{p}{T^4} = \sum_{n=0}^{\infty} c_n(T) \left(\frac{\mu}{T}\right)^n \simeq c_0 + c_2 \left(\frac{\mu}{T}\right)^2 + c_4 \left(\frac{\mu}{T}\right)^4 + c_6 \left(\frac{\mu}{T}\right)^6 + \cdots$$

number density:

$$\frac{n_q}{T^3} = 2c_2\left(\frac{\mu}{T}\right) + 4c_4\left(\frac{\mu}{T}\right)^3 + 6c_6\left(\frac{\mu}{T}\right)^5 + \cdots$$

 $\frac{\chi_q}{T^2} = 2c_2 + 12c_4\left(\frac{\mu}{T}\right)^2 + 30c_6\left(\frac{\mu}{T}\right)^4 + \cdots$

number susceptibility:

Thermodynamics for small μ/T

Taylor expansion:

$$\frac{p}{T^4} = \sum_{n=0}^{\infty} c_n(T) \left(\frac{\mu}{T}\right)^n \simeq c_0 + c_2 \left(\frac{\mu}{T}\right)^2 + c_4 \left(\frac{\mu}{T}\right)^4 + c_6 \left(\frac{\mu}{T}\right)^6 + \cdots$$

number density:

$$\frac{n_q}{T^3} = 2c_2\left(\frac{\mu}{T}\right) + 4c_4\left(\frac{\mu}{T}\right)^3 + 6c_6\left(\frac{\mu}{T}\right)^5 + \cdots$$

number susceptibility:

$$\frac{\chi_q}{T^2} = 2c_2 + 12c_4\left(\frac{\mu}{T}\right)^2 + 30c_6\left(\frac{\mu}{T}\right)^4 + \cdots$$

lattice results : Miao et al. arXiv:0810.0375 [hep-lat]

Thermodynamics for small μ/T

Taylor expansion:

$$\frac{p}{T^4} = \sum_{n=0}^{\infty} c_n(T) \left(\frac{\mu}{T}\right)^n \simeq c_0 + c_2 \left(\frac{\mu}{T}\right)^2 + c_4 \left(\frac{\mu}{T}\right)^4 + c_6 \left(\frac{\mu}{T}\right)^6 + \cdots$$

number density:

$$\frac{n_q}{T^3} = 2c_2\left(\frac{\mu}{T}\right) + 4c_4\left(\frac{\mu}{T}\right)^3 + 6c_6\left(\frac{\mu}{T}\right)^5 + \cdots$$

number susceptibility:

$$\frac{\chi_q}{T^2} = 2c_2 + 12c_4\left(\frac{\mu}{T}\right)^2 + 30c_6\left(\frac{\mu}{T}\right)^4 + \cdots$$

PQM: ($N_F=2+1$) M. Wagner et al. '09

Jochen Wambach Phases of Strongly-Interacting Matter: the 2+1 PQM model

Higher-order derivatives

'algorithmic differentiation': M. Wagner et al '09

rapid oscillations for ${\it T} \simeq {\it T}_c \leftrightarrow$ singularity in the complex plane

Finite μ extrapolations $N_F = 2 + 1$

Jochen Wambach Phases of Strongly-Interacting Matter: the 2+1 PQM model

Radius of convergence

Taylor expansion:

$$\frac{p(T,\mu)}{T^4} = \sum_{n=0}^{\infty} c_n(T) \left(\frac{\mu}{T}\right)^n \quad \text{with} \quad c_n(T) = \frac{1}{n!} \frac{\partial^n (p(T,\mu)/T^4}{\partial (\mu/T)^n}_{|_{\mu=0}}$$

radius of convergence:

$$r_n = \left| \frac{c_{2n}}{c_{2n+2}} \right|^{1/2}; \text{ or } \rho_n = \left| \frac{c_2}{c_{2n}} \right|^{1/(2n-2)}$$

estimate CEP from Taylor coefficients?

$$\left(\frac{\mu}{T}\right)_{c} = \lim_{n \to \infty} \sqrt{\left|\frac{c_{2n}}{c_{2n+2}}\right|}$$

$$= \lim_{n\to\infty} r_n = \lim_{n\to\infty} \rho_n$$

need $c_n(T) > 0$ for singularity on the real axis

Radius of convergence

M. Wagner et al '09

Summary and Conclusions

findings:

- based on relevant symmetries of QCD the PQM model incorporates chiral symmetry breaking and (stastistical) confinement
- parameters determined in the vaccum
- location of the CEP depends on σ -mass
- lattice EoS and fluctuations at $\mu = 0$ well reproduced by mean-field approx.
- assess properties not easily accessible on the lattice (pole masses, chiral limit,..)
- test latttice procedures for the CEP (convergence of Taylor expansion)

outlook:

- singularity in the complex μ -plane
- fluctuations beyond mean-field via RG
- transport properties

•

