Motivations from RHIC	Lattice QCD	Parton evolution at strong coupling	Conclusions	Backup

AdS/CFT and Heavy Ion Collisions

Edmond Iancu

Institut de Physique Théorique, Saclay & CNRS

Collaboration with Yoshitaka Hatta and Al Mueller (lecture notes Zakopane '08, arXiv:0812.0500)

July 9, 2009

Motivations from RHIC	Lattice QCD	Parton evolution at strong coupling	Conclusions	Backup

Motivations from RHIC Lattice QCD Parton evolution at strong coupling Conclusions

Motivations from RHIC	Lattice QCD	Parton evolution at strong coupling	Conclusions O	Backup 000000
Elliptic flow				

• Non-central AA collision: Pressure gradient is larger along x

 $\mathrm{d}\textit{N}/\mathrm{d}\phi \propto 1 + 2\textit{v}_2\cos 2\phi$, \textit{v}_2 = "elliptic flow"

• Large observed flow ! Inconsistent with weak coupling

Motivations from RHIC ○●○○○○○○	Lattice QCD	Parton evolution at strong coupling	Conclusions O	Backup 000000
Elliptic flow				

• Even heavy quarks (c, b) seem to flow !

Motivations from RHIC	Lattice QCD	Parton evolution at strong coupling	Conclusions O	Backup 000000
E-112 - 12 - 01				

 Well described by hydrodynamical calculations with very small viscosity/entropy ratio: "perfect fluid"

Motivations from RHIC	Lattice QCD	Parton evolution at strong coupling	Conclusions	Backup
00000				

Viscosity over entropy density ratio

- A small η/s ratio is a hint towards strong coupling
- Kinetic theory: viscosity is due to collisions among molecules

 $\eta \sim \rho \, \mathbf{v} \, \ell = \text{mass density} \, \times \, \text{velocity} \, \times \, \underbrace{ \begin{array}{c} \text{mean free path} \\ \sim 1/g^4 \end{array} }$

- Weakly interacting systems have $\eta/s \gg \hbar$
- Conjecture from AdS/CFT (Kovtun, Son, Starinets, 2003)

$$rac{\eta}{s} \geq rac{\hbar}{4\pi}$$
 [lower limit = infinite coupling]

• The RHIC value is at most a few times $\hbar/4\pi$!

Motivations from RHIC ○○○○●○○○	Lattice QCD	Parton evolution at strong coupling	Conclusions O	Backup
		112.2		

Jets in proton–proton collisions

[Nucl.Phys.A783:249-260,2007]

• Azimuthal correlations between the produced jets:

p+p or d+Au : a peak at $\Delta \Phi = 180^{\circ}$

Lattice QCD

Parton evolution at strong coupling

Conclusions

Backup

Nucleus-nucleus collisions at RHIC

- The "away-side" jet has disappeared ! absorbtion (or energy loss, or "jet quenching") in the medium
- The matter produced in a heavy ion collision is opaque high density, strong interactions, ... or both

Motivations from RHIC ○○○○○○●○	Lattice QCD	Parton evolution at strong coupling	Conclusions O	Backup 000000
	•			

Jet quenching parameter \hat{q} (weak coupling)

• Medium rescattering \implies transverse momentum broadening

- $xg(x, Q^2)$: gluon distribution per unit volume in the medium $xg(x, Q^2) \simeq n_q(T) xG_q + n_g(T) xG_g$ with $n_{q,g}(T) \propto T^3$
- This requires parton evolution from T up to $Q \gg T$
- Lowest order pQCD: $xG_g(x, Q^2) \simeq \alpha_s N_c \ln \frac{Q^2}{T^2}$

Nuclear me	dification	factor		
0000000				
Motivations from RHIC	Lattice QCD	Parton evolution at strong coupling	Conclusions	Backup

actu

• How to measure \hat{q} ? Compare AA collisions at RHIC to pp !

Lattice QCD ●○○○○○○ Parton evolution at strong coupling

Conclusions

Backup

QCD thermodynamics on the lattice (Bielefeld Coll.)

Trace anomaly from lattice QCD

• For $T\gtrsim 2T_c$, the quark–gluon plasma is nearly conformal

$$eta(g) rac{\mathrm{d} p}{\mathrm{d} g} = \langle T^{\mu}_{\mu}
angle = \mathcal{E} - 3p$$

• $(\mathcal{E}-3p)/\mathcal{E}_0~\lesssim~10\%$ for any $T~\gtrsim~2T_c\simeq400$ MeV

• AdS/CFT : Better suited for QCD at finite temperature

Motivations from RHIC	Lattice QCD ○○●○○○○	Parton evolution at strong coupling	Conclusions O	Backup 000000
D		• • • •		

Resummed perturbation theory

• This ratio $p/p_0 \approx 0.85$ can be also (and better !) explained by resummed perturbation theory ! (J.-P. Blaizot, A. Rebhan, E. I., 2000)

• Weakly coupled quasiparticles (quarks and gluons)

A lattice test of strong coupling (E.I., A. Mueller 09)

• Leading-twist, spin *n* operators (OPE for DIS) :

$$\mathcal{O}_{f}^{(n)\,\mu_{1}\cdots\mu_{n}} \equiv \bar{q}\,\gamma^{\mu_{1}}(iD^{\mu_{2}})\cdots(iD^{\mu_{n}})q \sim \bar{q}\,\mathcal{P}^{n-1}\,q$$
$$\mathcal{O}_{g}^{(n)\,\mu_{1}\cdots\mu_{n}} \equiv -F^{\mu_{1}\nu}(iD^{\mu_{2}})\cdots(iD^{\mu_{n-1}})F^{\mu_{n}}_{\nu}$$

• The operators depend upon the resolution scale

 A 'quasiparticle' on the scale T may reveal itself as highly composite on the harder scale Q >> T

Three Days of Strong Interactions, Wrocław 2009 AdS/CFT and Heavy Ion Collisions

Motivations from R	RHIC	Lattice QCD ○○○○●○○	Parton evolution at strong coupling	Conclusions O	Backup 000000
		-			

Renormalization group flow

 $\bullet~\mathsf{RG}\xspace$ flow \Longrightarrow negative anomalous dimensions

$$\mu^2 rac{\mathrm{d}}{\mathrm{d}\mu^2} \; \mathcal{O}^{(n)} \;=\; \gamma^{(n)} \mathcal{O}^{(n)} \quad ext{with} \quad \gamma^{(n)} \leq 0$$

• Only exception: energy momentum tensor for which $\gamma_T^{(2)} = 0$

$$T^{\mu\nu} = \mathcal{O}_f^{(2)\,\mu\nu} + \mathcal{O}_g^{(2)\,\mu\nu}$$

• QCD at weak coupling: slow evolution

$$\gamma^{(n)}(\mu^2) = -a^{(n)} \frac{\alpha_s(\mu^2)}{4\pi} \implies \frac{\mathcal{O}^{(n)}(Q^2)}{\mathcal{O}^{(n)}(\mu_0^2)} = \left[\frac{\ln(\mu_0^2/\Lambda^2)}{\ln(Q^2/\Lambda^2)}\right]^{a^{(n)}/b_0}$$

• Conformal theory, arbitrary coupling: $\frac{\mathcal{O}^{(n)}(Q^2)}{\mathcal{O}^{(n)}(\mu_n^2)} = \left[\frac{\mu_0^2}{Q^2}\right]^{|\gamma^{(n)}|}$

Lattice QCD

Parton evolution at strong coupling

Conclusions

Backup 000000

Anomalous dimensions from lattice QCD

• ${\cal N}=$ 4 SYM at strong 't Hooft coupling: $\lambda\equiv g^2 {\it N_c}\,\gg\,1$

$$\gamma^{(n)} \, \simeq \, - \sqrt{rac{n}{2}} \, \, \lambda^{1/4} \quad {
m for} \quad 1 \, \ll \, n \, \ll \, \sqrt{\lambda}$$

- All the unprotected leading-twist operators are strongly suppressed in the continuum limit $Q \equiv a^{-1} \rightarrow \infty$
- Measure unprotected operators in lattice thermal QCD !
- High-spin operators with $n \ge 4$ are difficult to measure \bigcirc
- One n = 2 unprotected operator: orthogonal to $T^{\mu\nu}$ \bigcirc

$$\Theta^{\mu\nu}(\mu^2) = \mathcal{O}_f^{(2)\,\mu\nu}(\mu^2) + C(\mu^2)\mathcal{O}_g^{(2)\,\mu\nu}(\mu^2)$$

• ... but we cannot compute $\mathcal{C}(\mu^2)$ except at weak coupling $\ensuremath{\mathfrak{S}}$

Quenched QCD: not only simpler, but also better

• ... or in quenched QCD (no quark loops), where $C(\mu^2) = 0$

- Measure the quark energy density in quenched lattice QCD ...compare the result with the weak coupling expectation (SB)
 - If the difference is less than 30% \Longrightarrow weak coupling
 - \bullet A reduction by a large factor $\gtrsim 5 \Longrightarrow$ strong coupling

Motivations from RHIC Lattice QCD Parton evolution at strong coupling Conclusions Backup 0000000 Conclusions Date of the strong coupling 0000000 Conclusions Concl

The AdS/CFT correspondance (Maldacena, 1997)

- Assume a strong coupling scenario : How to study parton evolution in a strongly coupled plasma ?
- 'Duality' : a gauge theory at strong coupling ($\mathcal{N} = 4$ SYM)

• $SU(N_c)$, conformal invariance, fixed coupling g, no confinement

- ... is equivalent to a string theory at weak coupling
- Strong 't Hooft coupling: $\lambda \equiv g^2 N_c \gg 1$ & $g^2 \ll 1$

• string theory reduces to classical supergravity in AdS_5

- $\mathcal{N} = 4$ SYM plasma at finite temperature: Black Hole in AdS₅
 - a Black Hole has entropy and thermal (Hawking) radiation

DIS off the Black Hole (Hatta, E.I., Mueller, 07)

- \textit{AdS}_5 : Our physical world (D=4) imes a 'radial' dimension χ
- Virtual photon in 4D \longleftrightarrow Maxwell wave A_{μ} in AdS_5 BH
- \bullet DIS cross section \longleftrightarrow absorption of the wave by BH
- Physical world: $\chi = 0$ Black Hole horizon: $\chi = 1/T$ • Maxwell equations in AdS_5 BH $\partial_m(\sqrt{-g}g^{mn}g^{pq}F_{nq}) = 0$ $F_{mn} = \partial_m A_n - \partial_n A_m$

 Radial penetration χ of the wave packet in AdS₅ ←→ transverse size L of the partonic fluctuation on the boundary

• Space-like photon with virtuality Q : The Maxwell wave penetrates up to a radial distance $\chi \sim 1/Q$

• AdS : The Maxwell wave gets stuck near the boundary $\chi \sim 1/Q$

Motivations fro	m RHIC	Lattice QCD	Parton (0000€	evolution at strong	coupling	Conclusions O	Backup 000000

Space–like photon in the plasma

• ... but it can decay in the presence of the plasma

• AdS : The Maxwell wave falls into the Black Hole ... but what is the physical interpretation ?

Three Days of Strong Interactions, Wrocław 2009 AdS/CFT and Heavy Ion Collisions

Motivations from RHIC	Lattice QCD	Parton evolution at strong coupling ○○○○○●○○○○○○	Conclusions O	Backup 000000
_				

Rescattering vs. parton branching

• Two generic mechanisms for decay inside the plasma :

• thermal rescattering

dominant mechanism at weak coupling

• medium-induced parton branching

dominant mechanism at strong coupling

Lattice QCD

Parton evolution at strong coupling

Conclusions

Backup 000000

Parton branching at strong coupling

• At strong coupling, branching is fast and quasi-democratic

 $\omega_n \sim rac{\omega_{n-1}}{2} \sim rac{\omega}{2^n}$ $Q_n \sim \sim rac{Q_{n-1}}{2}$ $\Delta t_n \sim rac{\omega_n}{Q^2}$

- When $\omega_n \sim Q_n \sim T$, the quanta disappear into the plasma
- Dominant mechanism for energy loss and momentum broadening at strong coupling

Three Days of Strong Interactions, Wrocław 2009 AdS/CFT and Heavy Ion Collisions

Momentum broadening for a heavy quark

• Strong coupling : fluctuations in the emission process

• pQCD : thermal rescattering (different physics !)

Lattice QCD

Parton evolution at strong coupling

Conclusions

Backup 000000

No jets at strong coupling !

• A time-like photon can decay already in the vacuum

strong coupling

 No jets in e⁺e⁻ annihilation at strong coupling ! (similar conclusion by Hofman and Maldacena, 2008)

Motivations from RHIC	Lattice QCD	Parton evolution at strong coupling	Conclusions	Backup
		00000000000		

Parton saturation at strong coupling

• Hadron wavefunction at strong coupling:

All partons branch down to small values of the longitudinal momentum fraction x and saturate (Polchinski and Strassler, 2003; Hatta, E.I., A. Mueller, 2007)

• $x > x_s(Q) \sim rac{\Lambda^2}{Q^2} \ll 1$: no partons

- $x < x_s(Q)$: occupation numbers ~ 1
- Energy-momentum sum rule

$$\int_0^1 \mathrm{d}x \, F_2(x,Q^2) \, \sim \, \mathcal{O}(1)$$

Motivations from RHIC	Lattice QCD	Parton evolution at strong coupling ○○○○○○○○○●○	Conclusions O	Backup 000000
No forward	jets !			

 No large-x partons => no forward/backward jets in a hadron-hadron collision at strong coupling

Lattice QCD

Parton evolution at strong coupling ○○○○○○○○○● Conclusions

Backup 000000

Partons at RHIC

- Partons are actually 'seen' (liberated) in the high energy hadron-hadron collisions
 - central rapidity: small-x partons
 - forward/backward rapidities: large-x partons

Motivations from RHIC	Lattice QCD	Parton evolution at strong coupling	Conclusions ●	Backup 000000
Conclusions				

- Hard probes & high-energy physics appears to be quite different at strong coupling as compared to pQCD
 - no jets in e^+e^- annihilation
 - no forward/backward particle production in HIC
 - different mechanism for jet quenching
- Are AdS/CFT methods useless for HIC ? Not necessarily so !
 - long-range properties (hydro, thermalization, etc) might be controlled by strong coupling
 - most likely, the coupling is moderately strong, so it useful to approach the problems from both perspectives
- One can test the strong-coupling hypothesis in lattice QCD

Motivations from	m RHIC	Lattice QCD	Parton evolution at strong coupling	Conclusions O	Backup ●○○○○○	

Deep inelastic scattering

• How to probe parton evolution at strong coupling ?

- \bullet Physical picture: γ^* absorbed by a quark excitation with
 - transverse size $\Delta x_{\perp} \sim 1/Q$
 - and longitudinal momentum $p_z = xP$

Motivations from RHIC	Lattice QCD	Parton evolution at strong coupling	Conclusions	Backup
				00000

Current-current correlator

• Total cross-section ("structure functions"): optical theorem

 $F_{1,2}(x,Q^2) ~\sim~ {
m Im} \, \int {
m d}^4 x \, {
m e}^{-iq\cdot x} \, i \, \langle P \, | {
m T} \left\{ J_\mu(x) J_
u(0)
ight\} | P
angle$

 $J^{\mu} = \sum_{f} e_{f} \, \bar{q}_{f} \, \gamma^{\mu} \, q_{f}$: quark electromagnetic current

• Valid to leading order in $\alpha_{\rm em}$ but all orders in α_s

DIS off the strongly coupled plasma

• Thermal expectation value ($Q^2\equiv |q^2|\gg T^2)$

$$\Pi_{\mu\nu}(q) \equiv \int \mathrm{d}^4 x \, \mathrm{e}^{-iq \cdot x} \, i\theta(x_0) \, \langle \left[J_{\mu}(x), J_{\nu}(0) \right] \rangle_{\mathcal{T}}$$

• $\mathcal{N} = 4$ SYM at finite temperature & $\lambda \equiv g^2 N_c \rightarrow \infty$: classical gravity in the $AdS_5 \times S^5$ Black Hole geometry

$$\mathrm{d}\boldsymbol{s}^{2} = \frac{R^{2}}{\chi^{2}} \left(-f(\chi)\mathrm{d}t^{2} + \mathrm{d}\boldsymbol{x}^{2} \right) + \frac{R^{2}}{\chi^{2}f(\chi)}\mathrm{d}\chi^{2} + R^{2}\mathrm{d}\Omega_{5}^{2}$$

where $f(\chi) = 1 - (\chi/\chi_0)^4$ and $\chi_0 = 1/T = BH$ horizon

• A Black Hole has entropy and thermal (Hawking) radiation

 $L \sim 1/O$

horizon

 $\chi = 1/T$

(Minkow

Space-like photon in the plasma

- Gravitational interactions are proportional to the energy density in the wave (ω) and in the plasma (T)
- High Q^2 /large Bjorken x The wave gets stuck near the boundary $\chi \lesssim 1/Q \ll 1/T$ 0 \implies No interaction with the BH AdS radius bulk • Low Q^2 /small x $x \equiv \frac{Q^2}{2\omega T} \lesssim x_s(Q) \simeq \frac{T}{Q}$ 1/T \implies The wave falls into the BH Black Hole χ.

Motivations from RHIC	Lattice QCD	Parton evolution at strong coupling	Conclusions	Backup
0000000	0000000	0000000000		000000

The energy–momentum sum rule

$$\int_0^1 \mathrm{d} x \, F_2(x,Q^2) = \mathit{const.}$$
 as $Q^2 o \infty$

ullet ... is still dominated by the few partons remaining at $x\sim \mathcal{O}(1)$

- As x
 ightarrow 0, F_2 rises 'only' like $F_2(x,Q^2) \sim x^{-\lambda}$ with $\lambda \lesssim 0.3$
- The small-x gluons are numerous, but carry very little energy
- Pointlike valence quarks

 \ldots to be contrasted with the situation at strong coupling !

Lattice QCD

Parton evolution at strong coupling

Conclusions

Backup ○○○○○●

Heavy Quark in a strongly-coupled plasma

- Medium-induced radiation
 - virtual quanta with $Q \lesssim Q_s$ are liberated into the plasma
 - energy loss, momentum broadening
 - Langevin equation from AdS/CFT

Casalderrey-Solana, Teaney, 2006; Gubser, 2006; Dominguez et al, 2008