Lowest negative parity baryons in the $1/N_c$ expansion

N. Matagne

Universität Gießen

10th July 2009

in collaboration with Fl. Stancu

Outline

Introduction

3 Excited baryons: an approximate approach

4 Excited baryons: the exact wave function

Conclusions

Motivation

- Traditional issue to study baryons: effective theories and constituent quark models
- The $1/N_c$ expansion is a **theoretical method** (1993)
 - Systematic
 - Model independent
 - Predictive
 - Gives support to constituent quark models
- It has been extensively applied to baryon masses, strong and photoproduction

<ロ> (日) (日) (日) (日) (日)

- Impossible to solve QCD exactly
- No perturbative expansion of QCD at low energies with respect to g

- 't Hooft suggested to generalize QCD to N_c color (1974)
- $1/N_c$ should be the expansion parameter of QCD
- Witten power counting rules (1979)

・ロト ・回ト ・ヨト ・

Mesons in large N_c QCD

$$|1\rangle_c = \frac{1}{\sqrt{N_c}} \underbrace{\left(\bar{l}l + \bar{m}m + \ldots + \bar{n}n\right)}_{N_c \text{ terms}}$$

Large N_c mesons are stable and non-interacting

Baryons in large N_c QCD

$$\varepsilon_{i_1i_2i_3\cdots i_{N_c}}q^{i_1}q^{i_2}q^{i_3}\cdots q^{i_{N_c}}$$

bound states of N_c valence quarks completely antisymmetric in color because baryons are colorless

Baryon mass grows with N_c

<ロ> (日) (日) (日) (日) (日)

Baryon weight diagrams

For $N_c = 3$ pn Λ^{-} $\Lambda^+ \Lambda^{++}$ Λ^0 $\Sigma^{*-} = \Sigma^{*0} = \Sigma^{*+}$ $\Sigma^- \quad \Lambda, \Sigma^0 \quad \Sigma^+$ 三*- 三*0 Ξ^{-} Ξ^0 Ω^{-} For large N_c 321 1234321 12344321 1234443 12222 122222 1234444321 122222 1233333 12222222 1222221 1111111111 1111111

Familiar $N_c = 3$ baryons can be identified with states at the top of the flavor representations

Exact $SU_f(3)$: all particles in each weight diagram have the same mass when $m_u = m_d = m_s$

Exact SU(6) : all the particles have the same mass

ground-state baryons satisfy a contracted $SU(2N_f)_c$ in $N_c \rightarrow \infty$ limit (contracted algebra) [1,2]

 \Rightarrow ground-state baryons form an infinite tower of degenerate states

Identification between the $SU(2N_f)_c$ algebra and the $SU(2N_f)$ algebra used in the quark-shell model in the $N_c \to \infty$ limit

 $SU(2N_f)$ used to classify large N_c baryons *i.e.* quark-shell model wave functions (non-relativistic) used in the following

Assume $SU(6) \times O(3)$ symmetry at leading order for excited baryons

The total wave function of baryons Ψ

$$\Psi = \psi_{lm} \chi \phi C$$

where ψ_{lm} , χ , ϕ and C are the space, spin, flavor and color part.

[1] J.-L. Gervais and B. Sakita, Phys. Rev. Lett. 52, 87 (1984); Phys. Rev. D30, 1795 (1984).

[2] R. Dashen and A. V. Manohar, Phys. Lett. B315, 425 (1993).

Baryon masses with exact SU(3) symmetry [3] Baryon mass transforms as a spin-flavor singlet (1,1)

$$M = c_0 N_c \mathbb{1} + c_2 \frac{1}{N_c} S^2 + c_4 \frac{1}{N_c^3} (S^2)^2 + \ldots + c_{N_c - 1} \frac{1}{N_c^{N_c - 2}} S^{N_c - 1}$$

Mass splittings for the tower of large N_c baryon states with $S=\frac{1}{2},\ldots,\frac{N_c}{2}$

[3] E. Jenkins and R.F. Lebed, Phys. Rev. D53, 2625 (1996)

10th July 2009 8 / 17

Baryon spectrum (SU(6) notation: $[\mathbf{X}, l^P]$)

$$N = 4 \qquad [56, 4^{+}] \qquad 2 - 3 \text{ GeV}$$

$$\vdots \qquad [20, 1^{+}] \\ N = 2 \qquad [70, 2^{+}] \\ 56, 2^{+}] \qquad \sim 2 \text{ GeV}$$

$$N = 1 \qquad [70, 1^{-}] \qquad \sim 1.5 \text{ GeV}$$

$$N = 0 \qquad [56, 0^{+}]$$

Excited baryons: an approximate approach [4]

- Witten's suggestion: Hartree approximation exact in $N_c \rightarrow \infty$ limit
 - $\bullet\,$ Each quark moves in an average potential generated by the other N_c-1 quarks
 - Total potential experienced by each quark is of order $\mathcal{O}(1)$
 - Interaction between any given pair of quarks of order $\mathcal{O}(1/N_c)$
- $[70, 1^-]$ multiplet (first excited band): baryons composed of $N_c 1$ ground-state quarks (the core) and 1 excited quark
- The core quarks are described by symmetric wave functions in spin-flavor parts as ground-state baryons
- Decouple the wave function: excited quark coupled to a symmetric core

[4] C.E. Carlson, C.D. Carone, J.L. Goity and R.F. Lebed, Phys. Rev. D59, 114008 (1999)

Lowest negative parity baryons in the $1/N_c$ expansion

Excited baryons: an approximate approach

Has been applied to $[{\bf 70},1^-],\,[{\bf 70},\ell^+]~(\ell=0,2)$ Mass operator

$$M_{[\mathbf{70},\ell^+]} = \sum_{i=1}^{6} c_i O_i + \sum_{j=1}^{4} d_j B_j$$

Operator	Fitte	d coef.	(MeV))
$O_1 = N_c 1 \!\! 1$	$c_1 =$	556	±	11
$O_2 = \ell_q^i s^i$	$c_2 =$	-43	\pm	47
$O_3 = \frac{3}{N_c} \ell_q^{(2)ij} g^{ia} G_c^{ja}$	$c_{3} =$	-85	\pm	72
$O_4 = \frac{4}{N_c + 1} \ell^i t^a G_c^{ia}$				
$O_5 = \frac{1}{N_c} (S_c^i S_c^i + s^i S_c^i)$	$c_{5} =$	253	\pm	57
$O_6 = \frac{1}{N_c} t^a T_c^a$	$c_{6} =$	-25	±	86
$B_1 = t^8 - \frac{1}{2\sqrt{3}N_c}O_1$	$d_1 =$	365	\pm	169
$B_2 = T_c^8 - \frac{N_c - 1}{2\sqrt{3}N_c}O_1$	$d_2 =$	-293	\pm	54
$B_4 = 3\ell_q^i g^{i8} - \frac{\sqrt{3}}{2}O_2$				

$$\chi^2_{\rm dof} = 1.0$$

[5] N. Matagne and Fl. Stancu, Phys. Rev. D74, 034014 (2006)

N. Matagne (Universität Gießen)

▲ 置 ▶ 目 ∽ Q (~ 10th July 2009 11 / 17 Excited baryons: an approximate approach

A totally symmetric orbital-spin-flavor state is given by

$$\Phi_{S} = \frac{1}{\sqrt{N_{c} - 1}} \sum_{Y} |[N_{c} - 1, 1]Y\rangle_{O}| [N_{c} - 1, 1]Y\rangle_{SF}$$

Illustration for $N_c = 5$ ([70, 1⁻]) (center of mass motion removed)

N. Matagne (Universität Gießen)

▲ ≣ ▶ ≣ ∽ ۹ (∾ 10th July 2009 12 / 17

Excited baryons: the exact wave function

Two approaches:

Split the wave function into a core of N_c - 1 quarks + 1 quark [6]
 Two main differences:
 core not always in the ground state and symmetric (S-F part),
 last quark not always excited

② Treat the multiplet without splitting the wave function [7]

$$|\ell SII_3; JJ_3\rangle = \sum_{m_\ell, S_3} \begin{pmatrix} \ell & S \\ m_\ell & S_3 \end{pmatrix} | \begin{bmatrix} J \\ J_3 \end{bmatrix} | [N_c - 1, 1]SS_3II_3\rangle | [N_c - 1, 1]\ell m_\ell\rangle$$

[6] N. Matagne, Fl. Stancu, Phys. Rev. D77, 054026 (2008)

[7] N. Matagne, Fl. Stancu, Nucl. Phys. A811, 291 (2008)

Results of the fits (nonstrange baryons) $[70,1^-]$ Only with the 7 resonances: $^2N_{1/2}(1538\pm18),\,^4N_{1/2}(1660\pm20),\,^2N_{3/2}(1523\pm8),\,^4N_{3/2}(1700\pm50),\,^4N_{5/2}(1678\pm8),\,^2\Delta_{1/2}(1645\pm30)$ and $^2\Delta_{3/2}(1720\pm50)$

Operator		Approx. w.f. (MeV)	Exact w.f. (MeV)
$O_1 = N_c 1\!\!1$	$c_1 =$	211 ± 23	299 ± 20
$O_2 = \ell^i s^i$	$c_2 =$	3 ± 15	3 ± 15
$O_3 = \frac{1}{N_c} s^i S_c^i$	$c_3 =$	-1486 ± 141	-1096 ± 125
$O_4 = \frac{1}{N_c} S_c^i S_c^i$	$c_4 =$	1182 ± 74	1545 ± 122
$O_5 = \frac{1}{N_c} t^a T_c^a$	$c_{5} =$	-1508 ± 149	417 ± 79
$\chi^2_{ m dof}$		1.56	1.56

10th July 2009 14 / 17

Operator		Fit (MeV)
$O_1 = N_c 1$	$c_1 =$	481 ± 5
$O_2 = \ell^i s^i$	$c_2 =$	-31 ± 26
$O_3 = \frac{1}{N_c} S^i S^i$	$c_3 =$	161 ± 16
$O_4 = \frac{1}{N_c} T^a T^a$	$c_4 =$	169 ± 36
$O_5 = \frac{15}{N_c} \ell^{(2)ij} G^{ia} G^{ja}$	$c_{5} =$	-29 ± 31
$O_6 = \frac{3}{N_c} \ell^i T^a G^{ia}$	$c_{6} =$	32 ± 26
$\chi^2_{ m dof}$		0.43

10th July 2009 15 / 17

イロト イポト イヨト イヨト 二日

Excited baryons: the exact wave function

	Part. contrib. (MeV)					Total (MeV)	Exp. (MeV)	Name, status	
	$c_1 O_1$	c_2O_2	$c_{3}O_{3}$	c_4O_4	c_5O_5	$c_{6}O_{6}$			
${}^{2}N_{\frac{1}{2}}$	1444	10	40	42	0	-8	1529 ± 11	1538 ± 18	$S_{11}(1535)^{****}$
${}^{4}N_{rac{1}{2}}$	1444	26	201	42	-31	-20	1663 ± 20	1660 ± 20	$S_{11}(1650)^{****}$
$2_{N_{\frac{3}{2}}}$	1444	-5	40	42	0	4	1525 ± 8	1523 ± 8	$D_{13}(1520)^{****}$
${}^{4}N_{\frac{3}{2}}$	1444	10	201	42	25	-8	1714 ± 45	1700 ± 50	$D_{13}(1700)^{***}$
$4_{N_{\frac{5}{2}}}$	1444	-16	201	42	-6	12	1677 ± 8	1678 ± 8	$D_{15}(1675)^{****}$
$^{2}\Delta_{\frac{1}{2}}$	1444	-10	40	211	0	-40	1645 ± 30	1645 ± 30	$S_{31}(1620)^{****}$
$^{2}\Delta_{\frac{3}{2}}$	1444	5	40	211	0	20	1720 ± 50	1720 ± 50	$D_{33}(1700)^{****}$

N. Matagne (Universität Gießen)

10th July 2009 16 / 17

メロト メポト メヨト メヨト 二日

Conclusions

- Two approaches for the study of excited baryons in the $1/N_c$ expansion
 - One based on the Hartree approximation, technicaly easier, but approximate (old approach)
 - One considering the wave function in one block and without splitting the operators into core + excited quark operators
- Contribution of I^2 as important as S^2
- Results at variance with that of Pirjol and Schat [8] (claim that the inclusion of core and excited quark operators is necessary)
- New approach should be extended to SU(6). More involved, isoscalar factors of SU(6) generators of a mixed symmetric wave function needed [9]
- [8] D. Pirjol and C. Schat, Phys. Rev. D78, 034026 (2008)
- [9] N. Matagne and Fl. Stancu, Nucl. Phys. A826, 161 (2009)