Charms in heavy ion collisions

Che-Ming Ko Texas A&M University

- Charm flow and energy loss
- Charmed baryon-to-meson ratios
- Charmonium production and flow
- Charm exotics at LHC

Collaborators: Su Houng Lee (Yonsei Univ.), Yongseok Oh (TAMU), Shigehiro Yasui (KEK), Ben-wei Zhang (Huazhong Normal Univ.), Bin Zhang (Arkansas State Univ.)

Supported by National Science Foundation and The Welch Foundation

Charmed meson elliptic flow

Charm quark elliptic flow from AMPT

- P_T dependence of charm quark v_2 is different from that of light quarks
- At high p_T , charm quark has similar v_2 as light quarks
- Charm elliptic flow is also sensitive to parton cross sections

Charm R_{AA} and elliptic flow from AMPT

Zhang, Chen & Ko, PRC 72, 024906 (05)

- Need large charm scattering cross section to explain data
- Smaller charmed meson elliptic flow is due to use of current light quark masses

Resonance effect on charm scattering in QGP

Van Hees & Rapp, PRC 71, 034907 (2005)

With $m_c \approx 1.5 \text{ GeV}$, $m_q \approx 5-10 \text{ MeV}$, $m_D \approx 2 \text{ GeV}$, $\Gamma_D \approx 0.3-0.5 \text{ GeV}$, and including scalar, pseudoscalar, vector, and axial vector D mesons gives

Since the cross section is isotropic, the transport cross section is 6 mb, which is about 4 times larger than that due to pQCD t-channel diagrams, leading to a charm quark drag coefficient $\gamma \sim 0.16$ c/fm in QGP at T=225 MeV.

Heavy quark energy loss in pQCD

a) Radiative energy loss (Amesto *et al.*, hep-ph/0511257)

b) Radiative and elastic energy loss (Wicks *et al.*, nucl-th/0512076)

c) Three-body elastic scattering (Liu & Ko, nucl-th/0603004)

May be important as interparton distance ~ range of parton interaction

- At T=300 MeV, $N_g \sim (N_q + N_{qbar}) \sim 5/fm^3$, so interparton distance ~ 0.3 fm Screening mass $m_D = gT \sim 600$ MeV, so range of parton interaction ~ 0.3 fm

Spectrum and nuclear modification factor of electrons from heavy meson decay

7

Enhancement of charmed baryon to meson ratio on non-photonic electrons in HIC

Sorenson, EJPC 49, 379 (2007)

Martinez-Garcia, Gadrat & Crotchet, PLB 663, 55 (2008)

Enhanced production of $\Lambda_{\rm c}$ lowers the nuclear modification factor for charm mesons

Diquark in sQGP and Λ_c **enhancement**

Diquark mass due to color-spin interaction:

$$m_{[ud]} \approx m_u + m_d - C \vec{s}_u \cdot \vec{s}_d \frac{1}{m_u m_d} \approx 450 \text{ MeV}$$

for $m_u = m_d = 300 \text{ MeV}$ and $C/m_u^2 \sim 195 \text{ MeV}$ from $m_\Delta - m_N$

Coalescence model

Statistical model

$$\frac{\Lambda_{\rm c}}{D_0} \approx 2 \left(\frac{m_{\Lambda_{\rm c}}}{m_{D_0}}\right)^{3/2} e^{-(m_{\Lambda_{\rm c}}-m_{D_0})/T_{\rm c}} \approx 0.24$$

Enhanced by a factor of 4-8
Similar for $\Lambda_{\rm B}/{\rm B}^0$

Lee, Yasui, Ohnishi, Yoo & Ko, PRL100, 222301 (2008)

Including coalescence contribution enhances Λ_c/D^0 ratio, which is further enhanced by the presence of diquarks in QGP

As for Λ_c/D^0 , including coalescence contribution enhances Λ_b/B^0 ratio, and it is further enhanced by the presence of diquarks in QGP $_{12}$

Effect of Λ_c enhancement on non-photonic electron R_{AA}

 R_{AA} at large p_T increases as Λ_c enhancement is at low p_t

13

J/ψ production from charm quark coalescence

suppressed (enhanced) yield but larger (smaller) average squared $p_{t_{14}}$

Charmonium spectra and elliptic flow

AMPT shows that charmonium elliptic flow is appreciable and increases with increasing parton cross sections

Charm production in HIC

- Direct production: Meuller, Wang (92); Vogt (94); Gavin (96)
 - Mainly from initial gluon fusions
 - About 3 pairs in mid-rapidity at RHIC (from STAR collaboration)
 - About 20 pairs in mid-rapidity at LHC
- Pre-thermal production: Lin, Gyulassy (95), Levai, Meuller, Wang (95).....
 - Not important based on minijet gluons
 - Production from initial strong color field?
- Thermal production from QGP: Levai, Vogt (97), Braun-Munzinger, Redlish....
 - Based on leading-order calculations
 - Important if initial temperature of QGP is high
- Thermal production from hadronic matter: Cassing et al. (99), Liu & Ko (02)
 - $\pi N \rightarrow \Lambda_c D$ and $\rho N \rightarrow \Lambda_c D$
 - Small effect on charm production in HIC

<u>Charm production from three-gluon interaction ggg→cc</u>

Determine rate for $ggg \rightarrow c\overline{c}$ from $c\overline{c} \rightarrow ggg$ via detailed balance

$$\mathbf{R} \propto \int \prod_{i=1}^{5} d^{3} p_{i} f_{i}(\mathbf{p}_{i}) |\mathbf{M}_{ggg \rightarrow c\overline{c}}|^{2} \delta^{(4)}(\mathbf{p}_{1} + \mathbf{p}_{2} + \mathbf{p}_{3} - \mathbf{p}_{4} - \mathbf{p}_{5}) \propto \langle \boldsymbol{\sigma}_{c\overline{c} \rightarrow ggg} \mathbf{v} \rangle \mathbf{n}_{c}^{eq} \mathbf{n}_{\overline{c}}^{eq}$$

Quark color-spin interaction and hadron masses

Lee, Yasui, Liu & Ko, EPJC 54, 259 (2007))

Baryon mass differences

Mass Difference	$M_{\Delta} - M_N$	$M_{\Sigma} - M_{\Lambda}$	$M_{\Sigma_c}-M_{\Lambda_c}$
Formula	$\frac{3C_B}{2m_c^2}$	$\frac{C_B}{m_u^2} \left(1 - \frac{m_u}{m_s}\right)$	$\frac{C_B}{m_u^2} \left(1 - \frac{m_u}{m_c}\right)$
Fit	290 MeV	77 MeV	154 MeV
Experiment	$290 \mathrm{MeV}$	$75 { m MeV}$	170 MeV

Diquark
$$\sum \frac{C_{B}}{m_{i}m_{j}} [s_{i} \cdot s_{j}]$$

c = -	
i 👝	d
<u> </u>	 '

 $m_u = m_d = 300 \text{ MeV}, m_s = 500 \text{ MeV}, m_c = 1500 \text{ MeV}, m_b = 4700 \text{ MeV}$

Meson mass differences

	55 UIIICI	LIICES	Ç	Quark-antiq	uark $\sum \frac{C_{M}}{m_{i}m_{i}} [s_{i} \cdot s_{j}]$
Mass Difference	$M_ ho - M_\pi$	$M_{K^*} - M_K$	$M_D \bullet - M_D$	$M_{B^*} - M_B$	
Formula	$\frac{C_M}{m_u^2}$	$\frac{C_M}{m_u m_g}$	$\frac{C_M}{m_u m_c}$	$\frac{C_M}{m_u m_b}$	
Fit	635 MeV	381 MeV	127 MeV	41 MeV	
Experiment	635 MeV	$397 \mathrm{MeV}$	137 MeV	$46 { m MeV}$	

Works very well with $3 \times C_{B} = C_{M} = 635 \text{ m}_{H}^{2}$

<u>Tetraquark ($ud\bar{q}_1\bar{q}_2$) mesons</u>

$\begin{array}{c} T_{q_1q_2} \ (S=1) \\ -\frac{3}{4} \frac{C_B}{m_u^2} + \frac{1}{4} \frac{C_B}{m_{q_1}^2} \end{array}$	$\begin{array}{c} u\bar{q}_1 \ (S=1) \\ \frac{1}{4} \frac{C_M}{m_u m_{q_1}} \end{array}$	$\begin{array}{c} d\bar{q}_2 \ (S=0) \\ -\frac{3}{4} \frac{C_M}{m_u m_{q_1}} \end{array}$	$T_{q_1q_2}$ $-u\bar{q}_1 - u\bar{q}_2$
T_{ss} -127	K^{*}_{92}	K_{-285}	63
$T_{cc} -143$	D^* 31	$D \\ -95$	-79
$T_{bb} - 145$	B^* 10	B = -30	-124

$T_{q_1q_2} (S=0)$	$u\bar{q}_1~(S=0)$	$d\bar{q}_2~(S=0)$	$T_{q_1q_2}$
$-\frac{3}{4}\frac{C_B}{m_u^2} - \frac{3}{4}\frac{C_B}{m_{q_1}m_{q_2}}$	$-rac{3}{4}rac{C_{M}}{m_{u}m_{q_{1}}}$	$-\frac{3}{4}\frac{C_{M}}{m_{u}m_{q_{2}}}$	$-u\bar{q}_1 - u\bar{q}_2$
T_{sc}	K	D	
-162	-285	-95	218
T_{sb}	K	B	
-150	-285	-30	165
T_{cb}	D	B	
-146	-95	-30	-21

Pentaquark (udusq) baryons

	$N_{3 C_M}$	$s\bar{q}$ 3 C_M	$\Theta_{qs}-N-s\bar{q}$
Θ_{qs} 3 C _B 3 C _B	$\begin{array}{c} -4 \overline{m_u^2} \\ \Sigma \\ 1 C_B & C_B \end{array}$	$-\frac{1}{4} \frac{\overline{m_u m_q}}{\overline{m_u m_q}}$ $d\bar{q}$ $3 C_M$	$\Theta_{qs} - \varSigma - d\bar{q}$
$-\frac{1}{4}\frac{\overline{m_u^2}}{\overline{m_u^2}}-\frac{1}{4}\frac{\overline{m_u m_s}}{\overline{m_u m_s}}$	$\frac{1}{4} \frac{1}{m_u^2} - \frac{1}{m_u m_s}$ A $3 C_B$	$-\frac{1}{4} \frac{m_u m_q}{m_u m_q}$ $u \bar{q}$ $3 C_M$	$\Theta_{qs}-\Lambda-u\bar{q}$
	$-\frac{1}{4}\frac{-2}{m_{u}^{2}}$	$-\frac{1}{4}\frac{m_u}{m_u}m_q$	
	Ν	D_s	$\Theta_{cs} - N - D_s$
	-145	-57	-30
Θ_{cs}	Σ	D	$\Theta_{cs} - \Sigma - D$
-232	-67	-95	-69
	Λ	D	$\Theta_{cs} - \Lambda - D$
	-145	-95	8
	N	B_s	$\Theta_{bs} - N - B_s$
	-145	-18	-68
Θ_{bs}	Σ	B	$\Theta_{bs} - \Sigma - B$
-232	-67	-30	-133
	Λ	B	$\Theta_{bs} - \Lambda - B$
	-145	-30	-56

Charm exotics production in HIC

Lee, Yasui, Liu & Ko, EPJC 54, 259 (2007)

- Charm tetraquark mesons
 - T_{cc} ($ud\overline{c}\overline{c}$) is ~ 80 MeV below D+D* according to quark model
 - Coalescence model predicts a yield of ~5.5X10⁻⁶ in central Au+Au collisions at RHIC and ~9X10⁻⁵ in central Pb+Pb collisions at LHC if midrapidity charm quark numbers are 3 and 20, respectively
 - Yields increase to 7.5X10⁻⁴ and 8.6X10⁻³, respectively, in the statistical model
- Charmed pentaquark baryons
 - $\Theta_{cs}(udus\overline{c})$ is ~ 70 MeV below D+ Σ in quark model
 - Yield is ~1.2X10⁻⁴ at RHIC and ~7.9X10⁻⁴ at LHC from the coalescence model for midrapidity charm quark numbers of 3 and 20, respectively
 - Statistical model predicts much larger yields of ~4.5X10⁻³ at RHIC and ~2.7X10⁻² at LHC

Decay modes of T_{cc} **and** Θ_{cs}

Table 8. Possible decay modes of T_{cc} . In the bottom row, we would observe the correlations $(K^+\pi^-)(K^+\pi^-)\pi^-$ and $(K^+\pi^+\pi^+\pi^-)(K^+\pi^-)\pi^-$ in the final states. See the text for details

Threshold	Decay mode	Lifetime
$\label{eq:masses} \begin{split} \overline{M_{T_{cc}} > M_{D^*} + M_D} \\ 2M_D + M_\pi < M_{T_{cc}} < M_{D^*} + M_D \\ M_{T_{cc}} < 2M_D + M_\pi \end{split}$	$\begin{array}{c} D^{*-}\bar{D}^{0}\\ \bar{D}^{0}\bar{D}^{0}\pi^{-}\\ D^{*-}K^{+}\pi^{-}, D^{*-}K^{+}\pi^{+}\pi^{-}\pi^{-}\end{array}$	hadronic decay hadronic decay 0.41×10^{-12} s

Table 9. Possible decay modes of Θ_{cs}

Threshold	Decay mode	Lifetime
$M_{\Theta_{cs}} > M_N + M_{D_s}$	pD_s^-	hadronic decay
$M_A + M_D < M_{\Theta_{cs}} < M_N + M_{D_s}$	$A\overline{D}^{0}$ AD^{-}	hadronic decay hadronic decay
$M_{\Theta_{cs}} < M_A + M_D$	$\begin{array}{c} \Lambda K^{+}\pi^{-},\Lambda K^{+}\pi^{+}\pi^{-}\pi^{-}\\ \Lambda K^{+}\pi^{-}\pi^{-} \end{array}$	$0.41 \times 10^{-12} \text{ s}$ $1.0 \times 10^{-12} \text{ s}$

<u> $D_{si}(2317): J^{\pi}=0^{+}$ </u>

- Mass of 2317 MeV less than those predicted by quark model and QCD sum rule for two-quark state (cs̄) but comparable to those for four-quark state (cs̄qq̄)
- Width of a few (two-quark) to a few tens (four quark) keV from decay to isospin violated channel of D_sπ, empirically less than 4.6 MeV limited by experimental resolution.
- Observed in elementary reactions:
 - BABAR: from $D_s + \pi^0$ inclusive invariant mass distribution in e⁺e⁻ annihilation (PRL 90, 242001 (03))
 - Belle: from B decay (PRL 91, 262002 (03))

D_{sJ} production at RHIC

- Cross sections shown are for four-quark state and are larger by ~9 for two-quark state.
- Final yield is sensitive to the quark structure of D_{sJ}

Summary

- Charm quarks interact strongly in QGP and including heavy quark three-body scattering in QGP helps to explain observed nuclear modification factor of electrons from heavy meson decays.
- Existence of diquarks in QGP enhances Λ_c and Λ_b production at RHIC and affects the yield of heavy mesons and thus the nuclear modification factor of electrons from charm meson decays.
- Charmonium regeneration is non-negligible at RHIC and expect appreciable charmonium elliptic flow.
- Thermal charm production could be important at LHC as the production rate increases exponentially with the temperature of QGP.
- Enhanced charm production at LHC offers the opportunity to search for possible charmed exotics such as T_{cc} , Θ_{cs} and D_{sj} .