Transition from Baryonic to Mesonic Freeze-Out.

Jean Cleymans, Helmut Oeschler, Krzysztof Redlich, Spencer Wheaton

EMMI Workshop and XXVI Max Born Symposium, Wroclaw, Poland July 9-11, 2009

Outline

Chemical Equilibrium

Comparison of Chemical Freeze-Out Criteria

If everything is smooth why is there such a roller-coaster in the particle ratios?

The Horn

Summary

E/N in 1999

æ

ヘロト ヘ回ト ヘヨト ヘヨト

E/N in 2000

æ

・ロト ・ 理 ト ・ 理 ト ・ 理 ト

E/N in 2005

æ

・ロト ・四ト ・ヨト ・ヨト

E/N in 2005

A. Andronic, P. Braun-Munzinger, J. Stachel, Nucl. Phys. A772, 167, 2006 J. Manninen, F. Becattini, M, Gazdzicki, Phys. Rev. C73 044905, 2006 R. Picha, U of Davis, Ph.D. thesis 2002

ъ

E/N in 2007

æ

・ロト ・ 理 ト ・ 理 ト ・ 理 ト

E/N in 2009

æ

・ロト ・ 理 ト ・ 理 ト ・ 理 ト

Chemical Freeze-Out: Criteria

ヘロア ヘロア ヘビア・

ъ

Chemical Freeze-Out

э

Chemical Freeze-Out Temperature

æ

Chemical Freeze-Out μ_B

æ

 μ_B as a function of $\sqrt{s_{NN}}$

$$\mu_B(\sqrt{s}) = \frac{1.308 \text{ GeV}}{1 + 0.273 \text{ GeV}^{-1}\sqrt{s}}$$

This predicts at LHC $\mu_B \approx$ 1 MeV.

J. C., H. Oeschler, K. Redlich, S. Wheaton Phys. Rev. C73 034905 (2006)

s/T^3

æ

ヘロト 人間 とくほとう ほとう

Transition

Λ/π Ratio

Strangeness in Heavy Ion Collisions vs Strangeness in pp - collisions

Use the Wroblewski factor

$$\lambda_{m{s}} = rac{2\left< m{sar{m{s}}}
ight>}{\left< m{uar{m{u}}}
ight> + \left< m{dar{m{d}}}
ight>}$$

This is determined by the number of **newly** created quark – anti-quark pairs and **before** strong decays, i.e. before ρ 's and Δ 's decay.

Limiting values : $\lambda_s = 1$ all quark pairs are equally abundant, SU(3) symmetry. $\lambda_s = 0$ no strange quark pairs.

・ロット (雪) (日) (日) (日)

Maxima in particle ratios : K^+/π^+

æ

・ロト ・ 理 ト ・ 理 ト ・ 理 ト

Maxima in particle ratios : K^+/π^+

<ロ> <部> <部> <き> <き> <き> <き

Maxima in particle ratios : K^+/π^+

æ

・ロン ・四 と ・ ヨ と ・ ヨ と

J.C., H. Oeschler, K. Redlich, S. Wheaton, Phys. Lett. B615 (2005) 50-54

In the statistical model a rapid change is expected as the hadronic gas undergoes a transition from a baryon-dominated to a meson-dominated gas. The transition occurs at a temperature T = 140 MeV and baryon chemical potential $\mu_B = 410$ MeV corresponding to an incident energy of $\sqrt{s_{NN}} = 8.2$ GeV.

In conclusion, the roller-coaster seen in the particle ratios corresponds to a transition from a baryon-dominated to a meson-dominated hadronic gas. This transition occurs at a

- temperature T = 140 MeV,
- baryon chemical potential $\mu_B = 410$ MeV,
- energy $\sqrt{s_{NN}} = 8.2$ GeV.

In the statistical model this transition leads to a peaks in the $\Lambda/\langle \pi \rangle$, K^+/π^+ , Ξ^-/π^+ and Ω^-/π^+ ratios.

In conclusion, the roller-coaster seen in the particle ratios corresponds to a transition from a baryon-dominated to a meson-dominated hadronic gas. This transition occurs at a

- temperature T = 140 MeV,
- baryon chemical potential $\mu_B = 410$ MeV,
- energy $\sqrt{s_{NN}} = 8.2$ GeV.

In the statistical model this transition leads to a peaks in the $\Lambda/\langle \pi \rangle$, K^+/π^+ , Ξ^-/π^+ and Ω^-/π^+ ratios.

In conclusion, the roller-coaster seen in the particle ratios corresponds to a transition from a baryon-dominated to a meson-dominated hadronic gas. This transition occurs at a

- temperature T = 140 MeV,
- baryon chemical potential $\mu_B = 410$ MeV,
- energy $\sqrt{s_{NN}} = 8.2 \text{ GeV}.$

In the statistical model this transition leads to a peaks in the $\Lambda/\langle \pi \rangle$, K^+/π^+ , Ξ^-/π^+ and Ω^-/π^+ ratios.

Thermal Model

The number of particles of type *i* is determined by:

$$E\frac{dN_i}{d^3p} = \frac{g_i}{(2\pi)^3} \int d\sigma_\mu p^\mu \exp\left(-\frac{p^\mu u_\mu}{T} + \frac{\mu_i}{T}\right)$$

Integrating this over all momenta

$$egin{aligned} N_i &= rac{g_i}{(2\pi)^3} \int d\sigma_\mu \int rac{d^3 p}{E} p^\mu \exp\left(-rac{p^\mu u_\mu}{T} + rac{\mu_i}{T}
ight) \ N_i &= \int d\sigma_\mu u^\mu n_i(T,\mu) \end{aligned}$$

or

If the temperature and chemical potential are unique along the freeze-out curve

$$N_i = n_i(T,\mu) \int d\sigma_\mu u^\mu$$

i.e. integrated (4π) multiplicities are the same as for a single fireball at rest (apart from the volume).

