Charmonium production at LHC

Magdalena Malek ALICE collaboration Institut de Physique Nucléaire, Orsay, France

for the LHC collaboration

10/07/09

Outline

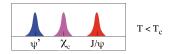
- Introduction
- Experimental results: SPS and RHIC
- 3 LHC
 - ATLAS
 - LHCb
 - CMS
 - ALICE
- 4 Conclusions

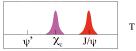
Quarkonia study: motivation

 study the deconfined state of the matter Quark Gluon Plasma

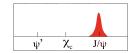
 → color screening of static potential between

heavy quarks

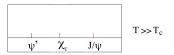

→ quarkonia **melting** above certain temperature/energy density threshold: **thermometer** of the medium


• probe of low-x gluon structure

 \hookrightarrow production via **gluon-gluon** fusion


 \hookrightarrow Bjorken-*x* values as low as $\sim 10^{-5}$: strong nuclear gluon shadowing

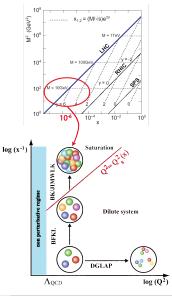
 $\hookrightarrow \textbf{gluon saturation: non-linear QCD}$ evolution



 $T \sim 1.1 T_{c}$

Quarkonia study: motivation

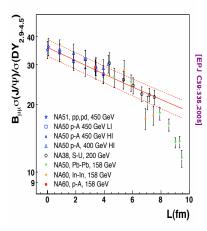
 study the deconfined state of the matter Quark Gluon Plasma


 → color screening of static potential between heavy quarks
 → quarkonia melting above certain temperature/energy density threshold: thermometer of the medium

 probe of low-x gluon structure

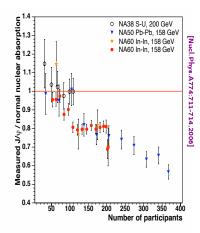
 → production via gluon-gluon fusion
 → Bjorken-x values as low as ~10⁻⁵: strong nuclear gluon shadowing

 \hookrightarrow gluon saturation: non-linear QCD evolution


quarkonia: probe of QCD media

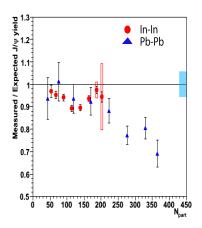
J/ψ at SPS

- normal nuclear absorption describes very well p-p, p-A, S-U and peripheral In-In and Pb-Pb data
- the survival probability evolves as $\exp(-\sigma_{abs}\rho_0 L)$
 - L: nuclear matter thickness
 - ρ_0 : nuclear density
 - σ_{abs} =4.18 \pm 0.35 mb
- anomalous suppression in Pb-Pb and In-In collisions for N_{part} > 80
- new results

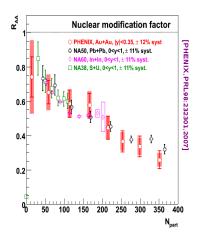

${\rm J}/\psi$ behaves as the predicted golden signature of the QGP !

J/ψ at SPS

- normal nuclear absorption describes very well p-p, p-A, S-U and peripheral In-In and Pb-Pb data
- the survival probability evolves as $\exp(-\sigma_{abs}\rho_0 L)$
 - L: nuclear matter thickness
 - ρ_0 : nuclear density
 - σ_{abs} =4.18 \pm 0.35 mb
- anomalous suppression in Pb-Pb and In-In collisions for $N_{part} > 80$
- new results



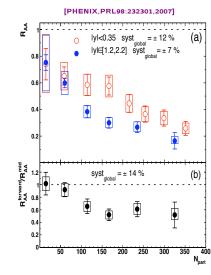
${\rm J}/\psi$ at SPS


- normal nuclear absorption describes very well p-p, p-A, S-U and peripheral In-In and Pb-Pb data
- the survival probability evolves as $\exp(-\sigma_{abs}\rho_0 L)$
 - L: nuclear matter thickness
 - ρ_0 : nuclear density
 - σ_{abs} =4.18 \pm 0.35 mb
- anomalous suppression in Pb-Pb and In-In collisions for $N_{part} > 80$
- new results

J/ψ behaves as the predicted golden signature of the QGP !

J/ψ at RHIC

- comparison via nuclear modification factor $R_{AA} = \frac{dN_{AA}/dyd_{Pt}}{N_{coll}dN_{PP}/dyd_{Pt}}$
- first surprise → similar suppression at SPS and at RHIC: R_{AuAu}@RHIC(y~0)≈R_{PbPb}@SPS
 - obvious differences between two systems: energy densities, ×_{Bj}, σ_{abs}, ...
- second surprise → the suppression is larger at forward than at mid-rapidities: R_{AµAµ}@RHIC(y~1.7) < R_{AµAµ}@RHIC(y~0)
 - energy density smaller in forward rapidity
 - regeneration, coalescence ?
 - saturation, shadowing ?
- new results

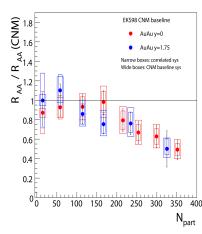

J/ψ at RHIC

- comparison via nuclear modification factor $R_{AA} = \frac{dN_{AA}/dydp_t}{N_{coll}dN_{PP}/dydp_t}$
- first surprise → similar suppression at SPS and at RHIC: R_{AuAu}@RHIC(y~0)≈R_{PhPh}@SPS
 - obvious differences between two systems: energy densities, ×_{Bj}, σ_{abs}, ...

 R_{AuAu} @RHIC(y~1.7) < R_{AuAu} @RHIC(y~0)

- energy density smaller in forward rapidity
- regeneration, coalescence ?
- saturation, shadowing ?

new results

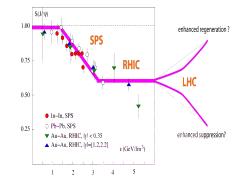

J/ψ at RHIC

- comparison via nuclear modification factor $R_{AA} = \frac{dN_{AA}/dydp_t}{N_{ach} dN_{BB}/dydp_t}$
- first surprise → similar suppression at SPS and at RHIC: R_{AuAu}@RHIC(y~0)≈R_{PhPh}@SPS
 - obvious differences between two systems: energy densities, ×_{Bj}, σ_{abs}, ...
- second surprise → the suppression is larger at forward than at mid-rapidities:
 D = (DPHIC(v, 1, 7)) < D = (DPHIC(v, 0))

 R_{AuAu} @RHIC(y~1.7) < R_{AuAu} @RHIC(y~0)

- energy density smaller in forward rapidity
- regeneration, coalescence ?
- saturation, shadowing ?

new results



LHC

J/ψ at LHC (1)

- big step in \sqrt{s} : LHC \approx RHIC \times 28
- probe unexplored Bjorken-x region
- large statistics expected
- regeneration or suppression?
- prediction: depends strongly on the open charm cross section
- secondary vs prompt J/ψ
- data taking strategy 1 LHC year = 10^7 s p-p ($3 \cdot 10^{30}$ cm⁻²s⁻¹) + 10^6 s A-A ($5 \cdot 10^{26}$ cm⁻²s⁻¹)

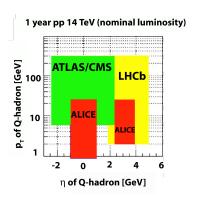
 $\begin{array}{l} \hookrightarrow p\text{-}p\text{:} \text{ reference for p-A and A-A (PDF, quarkonia production mechanisms, fragmentation function, CGC)} \\ \rightleftharpoons p\text{-}A\text{:} \text{ disentangle between initial and final state effects (shadowing, CGC, Cronin effect)} \\ \hookrightarrow A\text{-}A\text{: study of the hot and dense medium (quarkonia suppression/regeneration, secondary }J/\psi, thermal enhancement, energy loss mechanism, in medium hadronisation)} \end{array}$

LHC

J/ψ at LHC (1)

- big step in \sqrt{s} : LHC \approx RHIC \times 28
- probe unexplored Bjorken-x region
- large statistics expected
- regeneration or suppression?
- prediction: depends strongly on the open charm cross section
- secondary vs prompt J/ψ
- data taking strategy 1 LHC year = 10^7 s p-p ($3 \cdot 10^{30}$ cm⁻²s⁻¹) + 10^6 s A-A ($5 \cdot 10^{26}$ cm⁻²s⁻¹)

 $\begin{array}{l} \hookrightarrow p\text{-p:} \ \text{reference for p-A and A-A (PDF, quarkonia production mechanisms, fragmentation function, CGC)} \\ \hookrightarrow p\text{-A: disentangle between initial and final state effects (shadowing, CGC, Cronin effect)} \\ \hookrightarrow A\text{-A: study of the hot and dense medium (quarkonia suppression/regeneration, secondary <math>J/\psi$, thermal enhancement, energy loss mechanism, in medium hadronisation)



J/ψ at LHC (2)

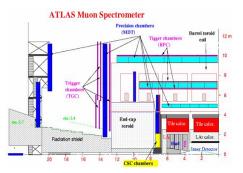
• experiments: ALICE, ATLAS, CMS and LHCb

LHC

- detection channels: e^+e^- and $\mu^+\mu^-$
- experimental challenges:
 - $\hookrightarrow \mathsf{B} \to \mathsf{J}/\psi \ (\psi') + \mathsf{X}$
 - \hookrightarrow energy loss of heavy quarks
 - $\hookrightarrow \text{ normalization}$
 - Drell-Yan not available for normalization (quarkonia from gg fusion at LHC; small D-Y cross section at LHC)
 - W, Z, **but** ... different production mechanisms, large difference in mass between bosons and quarkonia
 - open heavy flavour, **but** ... energy loss, thermal charm production
 - \hookrightarrow complex combinatorial background

Measuring quarkonia in ATLAS: $\mu^+\mu^-$

Excellent muon detection capabilities for $|\eta| < 2.7$

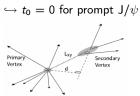

 detectors for muon detection
 → MDT: Monitored Drift Tubes (barrel and endcaps)
 ← CSC: Cathodo Strin Chambers

 \hookrightarrow CSC: Cathode Strip Chambers (endcaps)

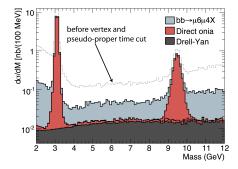
 \hookrightarrow **RPC**: Resistive Plates Chambers (barrel trigger)

 \hookrightarrow TGC: Thin Gap Chambers (endcaps and barrel trigger)

- $\bullet\,$ magnetic field: barrel toroid: \sim 0.5-1 T
- di-muon trigger: $p_T (\mu_{1,2}) > 4 \text{ GeV/c}$
- muon track resolution:
 - \hookrightarrow MDT: \sim 300 μ m
 - $\hookrightarrow \mathsf{CSC:} \sim \mathsf{50}\text{-}\mathsf{70}\ \mu \textit{m}$
- momentum measurement using MDT + CSC: p_T resolution (10 GeV/c) \sim 1.5 2%



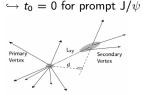
LHC ATLAS


ATLAS: J/ ψ @ p-p collisions

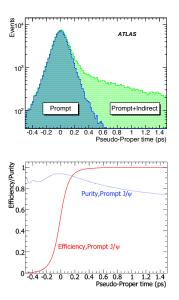
- 17000 J/ ψ per 1 pb⁻¹
- separation of prompt and indirect J/ψ using the radial displacement L_{xy} of two-track vertex from the beamline
 ⇒ pseudo-proper time decay t₀

$$t_0 = \frac{L_{xy} \cdot M_{J/\psi}}{p_T(J/\psi) \cdot c_{light}}$$

- mass resolution \sim 54 MeV/c²
- S/B = 60

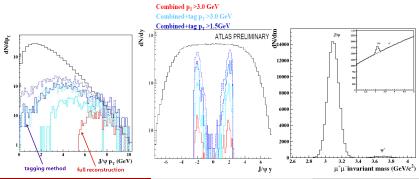


LHC ATLAS


ATLAS: J/ ψ @ p-p collisions

- 17000 J/ ψ per 1 pb⁻¹
- separation of prompt and indirect J/ψ using the radial displacement L_{xy} of two-track vertex from the beamline
 ⇒ pseudo-proper time decay t₀

$$t_0 = rac{L_{xy} \cdot M_{J/\psi}}{p_{T}(J/\psi) \cdot c_{light}}$$


- mass resolution \sim 54 MeV/c^2
- S/B = 60

LHC ATLAS

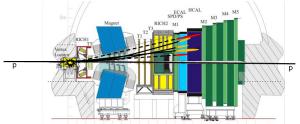
ATLAS: J/ψ @ Pb-Pb collisions

- 130000 J/ ψ per month (0.5 nb⁻¹)
- low acceptance due to minimum muon p_T cut 1.5 GeV/c
- two methods considered:
 - $\hookrightarrow \text{ both muons fully reconstructed}$
 - \hookrightarrow tagging method for one muon
- mass resolution \sim 68 MeV/c²
- S/B ~ 0.15

10/07/09 10 / 22

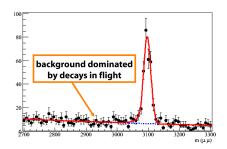
Magdalena.Malek@cern.ch ()

3 days of strong interactions, Wrocław, Poland


LHC LHCb

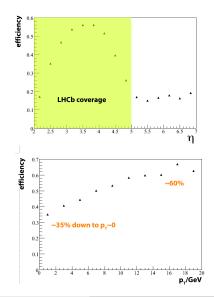
Measuring quarkonia in LHCb: only p-p collisions

- angular coverage 15 300 mrad: 2 < η < 5
- nominal luminosity: ${\sim}2{\times}10^{32}~\text{cm}^{-2}\text{s}^{-1}$
- muon system: 5 stations (M1,..,M5)
 → 1368 Multi-Wire Proportional Chambers (MWPC) for M2,...,M5
 → 12 triple-GEM for M1 (Gas-Electron Multiplier)
- $\bullet\,$ integrated magnetic field: \sim 4 T m


J/ψ selection

- pair of good quality tracks coming from a common vertex \hookrightarrow vertex χ^2 /dof < 6 and track χ^2 /dof < 5
- both tracks identified as muons
- \bullet one track with $p_{\mathcal{T}} > 1.5~GeV/c$

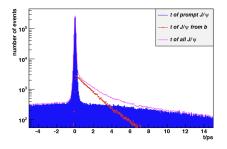
LHCb: J/ψ @ p-p collisions


- J/ ψ signal in 19.3 million minimum bias events
- fit with Crystal-Ball function: Gaussian J/ψ + exponential background
- mass resolution $\sim 11 \text{ MeV/c}^2$
- S/B \sim 4
- expected 3.2 \times 10 6 events in 5 pb^{-1} at 8 TeV
- efficiency correction estimated using Monte Carlo

LHC LHCb

LHCb: J/ψ @ p-p collisions

- J/ ψ signal in 19.3 million minimum bias events
- fit with Crystal-Ball function: Gaussian J/ ψ + exponential background
- mass resolution $\sim 11 \text{ MeV/c}^2$
- S/B \sim 4
- expected 3.2 \times 10 6 events in 5 pb^{-1} at 8 TeV
- efficiency correction estimated using Monte Carlo


LHC LHCb

LHCb: identifying prompt J/ψ

- \sim 8% J/ ψ come from b decays
- approximation of the proper time of the b quark in the forward direction

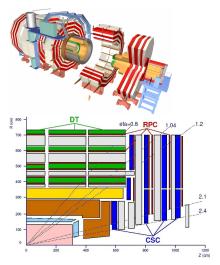
$$t = \frac{dz}{p_z^{J/\psi}} \times m^{J/\psi}$$

- \hookrightarrow prompt Gaussian component: J/ ψ produced in the primary vertex
- \hookrightarrow prompt background: extracted from the J/ ψ mass sidebands
- \hookrightarrow exponential component: J/ ψ 's produced from b decays
- \hookrightarrow long tail: due to the association of the J/ ψ to the wrong primary vertex

Measuring quarkonia in CMS

Ideally suited to study quarkonia production in the di-muon channel.

інс


CMS

detectors for muon detection
 → DT: Drift Tubes (central barrel)

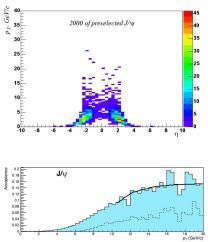
← CSC: Cathode Strip Chambers (endcap)

 \hookrightarrow **RPC**: Resistive Plates Chambers (barrel and endcap, trigger)

- large rapidity coverage $\mid \eta \mid$ <2.4
- strong magnetic field \sim 4 T (\sim 1.8 T)
- matching between tracks in the muon chambers and in the silicon tracker
- $p_{\mathcal{T}}$ resolution (10 GeV/c) \sim 0.8 2%
- minimum μ momenta:
 - $\stackrel{\hookrightarrow}{\rightarrow} \mathsf{barrel} \mid \eta \mid < \mathsf{0.8:} \ \mathbf{p}_{\mathcal{T}}^{\mu} > \mathsf{3.5} \ \mathsf{GeV/c} \\ \stackrel{\hookrightarrow}{\rightarrow} \mathsf{endcap:} \ \mathbf{p}_{\mathcal{L}}^{\mu} > \mathsf{4.0} \ \mathsf{GeV/c}$

Measuring quarkonia in CMS

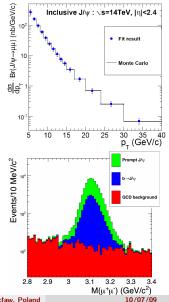
Ideally suited to study quarkonia production in the di-muon channel.


I HC

CMS

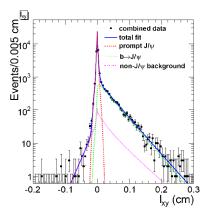
detectors for muon detection
 → DT: Drift Tubes (central barrel)
 → CSC: Cathode Strip Chambers (endcap)

→ RPC: Resistive Plates Chambers (barrel and endcap, trigger)


- large rapidity coverage $\mid \eta \mid$ <2.4
- strong magnetic field \sim 4 T (\sim 1.8 T)
- matching between tracks in the muon chambers and in the silicon tracker
- $p_{\mathcal{T}}$ resolution (10 GeV/c) \sim 0.8 2%
- minimum μ momenta:
 - $\hookrightarrow \text{ barrel } | \eta | < 0.8: \mathbf{p}_{T}^{\mu} > \mathbf{3.5 ~ GeV/c} \\ \hookrightarrow \text{ endcap: } \mathbf{p}_{I}^{\mu} > \mathbf{4.0 ~ GeV/c}$

LHC CMS

CMS: J/ψ @ p-p collisions

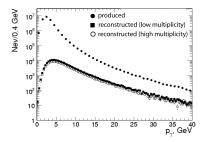

- \sim 25000 J/ ψ per 1 pb⁻¹ (1-2 days)
- expected p_T spectrum after 3 pb⁻¹ (~ 75000 J/ ψ)
- J/ψ yield is extracted by fitting the dimuon mass distribution, separating the signal peak from the underlying background continuum
- observed J/ψ yield: \hookrightarrow direct J/ψ \hookrightarrow decays from B hadrons
 - \hookrightarrow decays from χ_c and ψ'
- non-prompt fraction estimated using the pseudo proper decay length

LHC CMS

CMS: J/ψ @ p-p collisions

- \sim 25000 J/ ψ per 1 pb⁻¹ (1-2 days)
- expected p_T spectrum after 3 pb⁻¹ (~ 75000 J/ ψ)
- J/ψ yield is extracted by fitting the dimuon mass distribution, separating the signal peak from the underlying background continuum
- observed J/ψ yield: \hookrightarrow direct J/ψ
 - \hookrightarrow decays from B hadrons
 - \hookrightarrow decays from χ_c and ψ
- non-prompt fraction estimated using the pseudo proper decay length

CMS: J/ψ @ Pb-Pb collisions

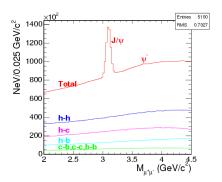

• 0.5 nb⁻¹: one month at 4×10^{26} cm⁻²s⁻¹ and 50% machine operation efficiency, assuming no quarkonia suppression

LHC

$dN_{ch}/d\eta\mid_{\eta=0}$	$\Delta \eta$	S/B	$N(J/\psi)$
2500	η <2.4	1.2	184000
2500	η <0.8	4.5	11600
5000	η <2.4	0.6	146000
5000	$\mid \eta \mid <$ 0.8	2.8	12600

CMS

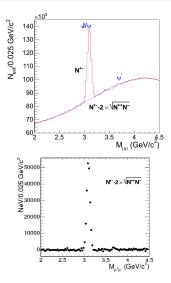
• transverse momentum spectrum up to 40 GeV/c



CMS: J/ψ @ Pb-Pb collisions

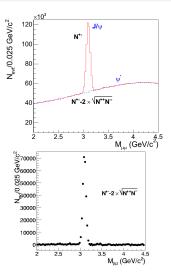
LHC

CMS

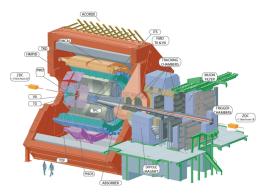

- signal + background \hookrightarrow integrated luminosity: 0.5 nb⁻¹ \hookrightarrow high multiplicity setting: $dN_{ch}/d\eta \mid_{\eta=0} = 5000$ \hookrightarrow background: • 90 % from $\pi^{\pm}/K^{\pm} \rightarrow \mu + X$
 - open heavy flavour (D,B) meson decays (BR~18% (38%) for c(b))
- J/ ψ like-sign subtraction \hookrightarrow the best case: $dN_{ch}/d\eta \mid_{\eta=0} = 2500 \text{ and } \mid \eta \mid < 0.8$ \hookrightarrow the worst case: $dN_{ch}/d\eta \mid_{\eta=0} = 5000 \text{ and } \mid \eta \mid < 2.4$
- mass resolution \sim 35 MeV/c²

LHC CMS

CMS: J/ψ @ Pb-Pb collisions


- signal + background \hookrightarrow integrated luminosity: 0.5 nb⁻¹ \hookrightarrow high multiplicity setting: $dN_{ch}/d\eta \mid_{\eta=0} = 5000$ \hookrightarrow background: • 90 % from $\pi^{\pm}/K^{\pm} \rightarrow \mu + X$
 - open heavy flavour (D,B) meson decays (BR~18% (38%) for c(b))
- J/ ψ like-sign subtraction \hookrightarrow the best case: $dN_{ch}/d\eta \mid_{\eta=0} = 2500 \text{ and } \mid \eta \mid < 0.8$ \hookrightarrow the worst case: $dN_{ch}/d\eta \mid_{\eta=0} = 5000 \text{ and } \mid \eta \mid < 2.4$
- mass resolution \sim 35 MeV/c²

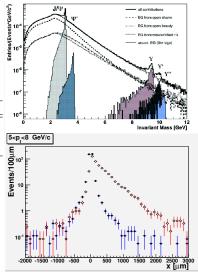
LHC CMS


CMS: J/ψ @ Pb-Pb collisions

- signal + background \hookrightarrow integrated luminosity: 0.5 nb⁻¹ \hookrightarrow high multiplicity setting: $dN_{ch}/d\eta \mid_{\eta=0} = 5000$ \hookrightarrow background: • 90 % from $\pi^{\pm}/K^{\pm} \rightarrow \mu + X$
 - open heavy flavour (D,B) meson decays (BR~18% (38%) for c(b))
- J/ ψ like-sign subtraction \hookrightarrow the best case: $dN_{ch}/d\eta \mid_{\eta=0} = 2500 \text{ and } \mid \eta \mid < 0.8$ \hookrightarrow the worst case: $dN_{ch}/d\eta \mid_{\eta=0} = 5000 \text{ and } \mid \eta \mid < 2.4$
- mass resolution \sim 35 MeV/c²

Measuring quarkonia in ALICE

- covers central (| η | < 0.9) and forward (-4.0 < η < -2.5) regions
- $\bullet\,$ coverage extends to $p_{\mathcal{T}}\sim 0$ for quarkonia
- channels: electronic, muonic and hadronic
- high precision vertexing in the central barrel
- detection channels: e^+e^- and $\mu^+\mu^-$



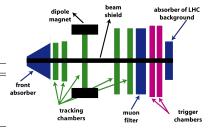
ALICE: quarkonia to dielectrons for $|\eta| < 0.9$

- tracking (ITS, TPC, TRD) + vertexing (ITS) + electron identification (TPC, TRD) + trigger (TRD)
- expected statistics 1 month of 10 % central Pb-Pb, $dN_{ch}/dy = 3000$, L=5 × 10²⁶ cm⁻²s⁻¹, 2 × 10⁸ events, M±1.5 σ

state	S(x10 ³)	B(x10 ³)	S/B	$S/\sqrt{S+B}$
J/ψ	121.1	88.2	1.4	265
Υ	1.3	0.8	1.6	28
Υ'	0.46	0.8	0.6	13

- secondary vs prompt J/ψ
 - \sim 22(39) % of J/ $\psi~(\psi^{'})$ come from beauty hadron decay
 - ${\rm J}/\psi$ originating from B decays are produced at large distance from the primary vertex
- mass resolution \sim **30** MeV/c²

ALICE: quarkonia to dimuons for -4 $<\eta$ -2.5


• muon spectrometer

- $\hookrightarrow \mathsf{absorbers}$
- $\hookrightarrow \mathsf{tracking} \ \mathsf{system}$
- \hookrightarrow trigger chambers
- \hookrightarrow dipole magnet \sim **0.7** T

expected statistics

1 month central Pb-Pb (0 <b<3 fm),

	L=5 \times 10 ²⁶ cm ⁻² s ⁻¹ , M \pm 2 σ					
	state	S(x10 ³)	B(x10 ³)	S/B	S/ \[\sqrt{S+B}\]	
1	J/ψ	130	680	0.20	150	
	ψ'	3.7	300	0.01	6.7	
	Ϋ́.	1.3	0.8	1.7	29	
	Ύ	0.35	0.54	0.65	12	
	τ″	0.20	0.42	0.48	8.1	

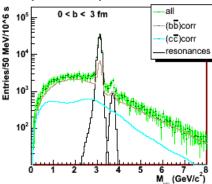
- J/ ψ : large statistics, p_T=0-20 GeV/c
- ψ' : poor significance
- Υ, Υ': p_T=0-8 GeV/c
- Υ'' : 2-3 runs needed
- mass resolution \sim 70 MeV/c²

ALICE: quarkonia to dimuons for -4 $<\eta$ -2.5

• muon spectrometer

- $\hookrightarrow \mathsf{absorbers}$
- $\hookrightarrow \mathsf{tracking} \ \mathsf{system}$
- \hookrightarrow trigger chambers
- \hookrightarrow dipole magnet \sim **0.7** T

• expected statistics


1 month central Pb-Pb (0 <b<3 fm),

L=5 \times 10 ²⁶ cm ⁻² s ⁻¹ , M \pm 2 σ					
state	S(x10 ³)	B(x10 ³)	S/B	S/ \[\sqrt{S+B}\]	
J/ψ	130	680	0.20	150	
ψ'	3.7	300	0.01	6.7	
r,	1.3	0.8	1.7	29	
r'	0.35	0.54	0.65	12	
^′′	0.20	0.42	0.48	8.1	

- J/ψ : large statistics, $p_T = 0-20 \text{ GeV/c}$
- ψ' : poor significance
- Υ, Υ': p_T=0-8 GeV/c
- Υ'' : 2-3 runs needed
- mass resolution \sim 70 MeV/c²

J/ψ family Uncorrelated bkg subtracted

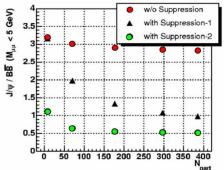
[ALICE PPR Vol.2]

ALICE: suppression scenario

dimuon channel, statistics: 1 month Pb-Pb collisions, $L=5\cdot10^{26}$ cm⁻²s⁻¹

assumptions

no nuclear absorption no energy loss of b quarks no combinatorial bkg


$\frac{\text{with suppression-1}}{T_c=270 \text{ MeV}}$ $T_D/T_c=1.7 \text{ for } J/\psi$ $T_D/T_c=4.0 \text{ for } \Upsilon$

LHC

ALICE

 $\frac{\text{with suppression-2}}{T_c = 190 \text{ MeV}} \\ T_D/T_c = 1.21 \text{ for } J/\psi \\ T_D/T_c = 2.9 \text{ for } \Upsilon$

[ALICE PPR Vol.2]

ALICE: suppression scenario

dimuon channel, statistics: 1 month Pb-Pb collisions, L=5.10²⁶ cm⁻²s⁻¹

assumptions

no nuclear absorption no energy loss of b quarks $T_D/T_c=1.7$ for J/ ψ no combinatorial bkg


with suppression-1 $T_c = 270 \text{ MeV}$ $T_D/T_c=4.0$ for Υ

LHC

ALICE

with suppression-2 $T_c = 190 \text{ MeV}$ $T_D/T_c=1.21$ for J/ψ $T_D/T_c=2.9$ for Υ

Ability to distinguish between different suppression scenarios !

Conclusions

Conclusions

- quarkonia are a powerful tool to probe the QCD in p+p, p+A and A+A collisions:
 → p+p (vacuum production): production picture, polarization
 - \hookrightarrow A+A: sensitive probe of QGP properties
 - \hookrightarrow p+A: cold nuclear matter effects
 - \hookrightarrow produced via gg fusion: probe of low-x QCD
- LHC will help to clarify the quarkonia production picture
- large statistics of quarkonia are expected at LHC
- ALICE/ATLAS/CMS have complementary capabilities
- charmonia performance

ALICE $\mu^+\mu^-$	ALICE e^+e^-	CMS $\mu^+\mu^-$	ATLAS $\mu^+\mu^-$
70 MeV/c ²	30 MeV/c ²	35 MeV/c ²	68 MeV/c ²

• more analysis not discussed here...