Charmonium production at LHC

Magdalena Malek

ALICE collaboration Institut de Physique Nucléaire, Orsay, France

for the LHC collaboration

10/07/09

- Introduction
- Experimental results: SPS and RHIC
- LHC
 - ATLAS
 - LHCb
 - CMS
 - ALICE
- Conclusions

Quarkonia study: motivation

- study the deconfined state of the matter Quark Gluon Plasma
- probe of low-x gluon structure

 - \hookrightarrow Bjorken-x values as low as $\sim 10^{-5}$: strong nuclear gluon shadowing
 - ⇔ gluon saturation: non-linear QCD evolution

 $T \sim 1.1 T_c$

Quarkonia study: motivation

- study the deconfined state of the matter
 Quark Gluon Plasma
- probe of low-x gluon structure
 - \hookrightarrow production via gluon-gluon fusion
 - \hookrightarrow Bjorken-x values as low as $\sim 10^{-5}$: strong nuclear gluon shadowing

quarkonia: probe of QCD media

J/ψ at SPS

- normal nuclear absorption describes very well p-p, p-A, S-U and peripheral In-In and Pb-Pb data
- the survival probability evolves as $\exp(-\sigma_{abs}\rho_0 L)$
 - L: nuclear matter thickness
 - ρ_0 : nuclear density
 - $\sigma_{abs} = 4.18 \pm 0.35 \text{ mb}$
- anomalous suppression in Pb-Pb and In-In collisions for $N_{part} > 80$
- new results

 J/ψ behaves as the predicted golden signature of the QGP!

J/ψ at SPS

- normal nuclear absorption describes very well p-p, p-A, S-U and peripheral In-In and Pb-Pb data
- the survival probability evolves as $\exp(-\sigma_{abs}\rho_0 L)$
 - L: nuclear matter thickness
 - ρ_0 : nuclear density
 - $\sigma_{abs} = 4.18 \pm 0.35 \text{ mb}$
- anomalous suppression in Pb-Pb and In-In collisions for N_{part} > 80
- new results

 ${\rm J}/\psi$ behaves as the predicted golden signature of the QGP !

J/ψ at SPS

- normal nuclear absorption describes very well p-p, p-A, S-U and peripheral In-In and Pb-Pb data
- the survival probability evolves as $\exp(-\sigma_{abs}\rho_0 L)$
 - · L: nuclear matter thickness
 - ρ_0 : nuclear density
 - $\sigma_{abs} = 4.18 \pm 0.35 \text{ mb}$
- anomalous suppression in Pb-Pb and In-In collisions for N_{part} > 80
- new results

 ${\rm J}/\psi$ behaves as the predicted golden signature of the QGP !

J/ψ at RHIC

- comparison via nuclear modification factor $R_{AA} = \frac{dN_{AA}/dydp_t}{N_{coll}dN_{pp}/dydp_t}$
- first surprise → similar suppression at SPS and at RHIC:

$$R_{AuAu}$$
@RHIC(y \sim 0) \approx R_{PbPb}@SPS

- obvious differences between two systems: energy densities, \times_{Bi} , σ_{abs} , ...
- second surprise
 the suppression is larger at forward than at mid-rapidities:

$$R_{AuAu}$$
@RHIC(y \sim 1.7) $\stackrel{\cdot}{<} R_{AuAu}$ @RHIC(y \sim 0)

- energy density smaller in forward rapidity
- regeneration, coalescence ?
- saturation, shadowing ?
- new results

J/ψ at RHIC

- comparison via nuclear modification factor $R_{AA} = \frac{dN_{AA}/dydp_t}{N_{coll}dN_{PP}/dydp_t}$
- first surprise → similar suppression at SPS and at RHIC:

$$R_{AuAu}$$
@RHIC(y \sim 0) \approx R_{PbPb}@SPS

- obvious differences between two systems: energy densities, \times_{Bj} , σ_{abs} , ...
- second surprise
 the suppression is larger at forward than at mid-rapidities:

$$R_{AuAu}$$
@RHIC(y \sim 1.7) < R_{AuAu} @RHIC(y \sim 0)

- · energy density smaller in forward rapidity
- regeneration, coalescence ?
- saturation, shadowing ?
- new results

[PHENIX,PRL98:232301,2007]

J/ψ at RHIC

- comparison via nuclear modification factor $R_{AA} = \frac{dN_{AA}/dydp_t}{N_{coll}dN_{pp}/dydp_t}$
- first surprise → similar suppression at SPS and at RHIC:

$$R_{AuAu}$$
@RHIC(y \sim 0) \approx R_{PbPb}@SPS

- obvious differences between two systems: energy densities, \times_{Bi} , σ_{abs} , ...
- second surprise
 the suppression is larger at forward than at mid-rapidities:

$$R_{AuAu}$$
@RHIC(y \sim 1.7) < R_{AuAu} @RHIC(y \sim 0)

- · energy density smaller in forward rapidity
- regeneration, coalescence ?
- saturation, shadowing ?
- new results

J/ψ at LHC (1)

- big step in \sqrt{s} : LHC \approx RHIC \times 28
- probe unexplored Bjorken-x region
- large statistics expected
- regeneration or suppression?
- prediction: depends strongly on the open charm cross section
- secondary vs prompt J/ψ
- data taking strategy 1 LHC year = 10^7 s p-p $(3 \cdot 10^{30}$ cm⁻²s⁻¹) + 10^6 s A-A $(5 \cdot 10^{26}$ cm⁻²s⁻¹)

 \hookrightarrow p-p: reference for p-A and A-A (PDF, quarkonia production mechanisms, fragmentation function, CGC) \hookrightarrow p-A: disentangle between initial and final state effects (shadowing, CGC, Cronin effect) \hookrightarrow A-A: study of the hot and dense medium (quarkonia suppression/regeneration, secondary J/ψ , thermal enhancement, energy loss mechanism, in medium hadronisation)

J/ψ at LHC (1)

- big step in \sqrt{s} : LHC \approx RHIC \times 28
- probe unexplored Bjorken-x region
- large statistics expected
- regeneration or suppression?
- prediction: depends strongly on the open charm cross section
- secondary vs prompt J/ψ
- data taking strategy 1 LHC year = 10^7 s p-p $(3 \cdot 10^{30}$ cm⁻²s⁻¹) + 10^6 s A-A $(5 \cdot 10^{26}$ cm⁻²s⁻¹)

 \hookrightarrow p-p: reference for p-A and A-A (PDF, quarkonia production mechanisms, fragmentation function, CGC) \hookrightarrow p-A: disentangle between initial and final state effects (shadowing, CGC, Cronin effect) \hookrightarrow A-A: study of the hot and dense medium (quarkonia suppression/regeneration, secondary J/ψ , thermal enhancement, energy loss mechanism, in medium hadronisation)

J/ψ at LHC (2)

- experiments: ALICE, ATLAS, CMS and LHCb
- detection channels: e^+e^- and $\mu^+\mu^-$
- experimental challenges:

$$\hookrightarrow \mathsf{B} \to \mathsf{J}/\psi \ (\psi') + \mathsf{X}$$

- → normalization
 - Drell-Yan not available for normalization (quarkonia from gg fusion at LHC; small D-Y cross section at LHC)
 - W, Z, but ... different production mechanisms, large difference in mass between bosons and quarkonia
 - open heavy flavour, but ... energy loss, thermal charm production

Measuring quarkonia in ATLAS: $\mu^+\mu^-$

Excellent muon detection capabilities for $|\eta| < 2.7$

- detectors for muon detection

 - (endcaps)

 → RPC: Resistive Plates Chambers
 - (barrel trigger)
- magnetic field: barrel toroid: \sim 0.5-1 T
- di-muon trigger: $p_T (\mu_{1,2}) > 4 \text{ GeV/c}$
- muon track resolution:
 - \hookrightarrow MDT: \sim 300 μ m
 - \hookrightarrow CSC: \sim 50-70 μm
- momentum measurement using MDT + CSC: p_T resolution (10 GeV/c)
 - \sim 1.5 2%

ATLAS: J/ψ @ p-p collisions

- 17000 J/ψ per 1 pb⁻¹
- separation of prompt and indirect J/ψ using the radial displacement L_{xy} of two-track vertex from the beamline
 ⇒ pseudo-proper time decay t₀

$$t_0 = \frac{L_{xy} \cdot M_{J/\psi}}{p_T(J/\psi) \cdot c_{light}}$$

 $\hookrightarrow t_0 = 0$ for prompt J/ψ

- mass resolution \sim 54 MeV/c²
- S/B = 60

ATLAS: J/ ψ @ p-p collisions

- 17000 J/ψ per 1 pb⁻¹
- separation of prompt and indirect J/ψ using the radial displacement L_{xy} of two-track vertex from the beamline
 ⇒ pseudo-proper time decay t₀

$$t_0 = \frac{L_{xy} \cdot M_{J/\psi}}{p_T(J/\psi) \cdot c_{light}}$$

 $\hookrightarrow t_0 = 0$ for prompt J/ψ

- mass resolution \sim 54 MeV/c²
- S/B = 60

- 130000 J/ ψ per month (0.5 nb⁻¹)
- low acceptance due to minimum muon p_T cut 1.5 GeV/c
- two methods considered:
 - \hookrightarrow both muons fully reconstructed
 - \hookrightarrow tagging method for one muon
- mass resolution ~ 68 MeV/c²
- \bullet S/B \sim 0.15

Measuring quarkonia in LHCb: only p-p collisions

- angular coverage 15 300 mrad: $2 < \eta < 5$
- nominal luminosity: $\sim 2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
- muon system: 5 stations (M1,..,M5)

 → 1368 Multi-Wire Proportional Chambers (MWPC) for M2,...,M5

 → 12 triple-GEM for M1 (Gas-Electron Multiplier)
- ullet integrated magnetic field: \sim 4 T m

J/ψ selection

- pair of good quality tracks coming from a common vertex \hookrightarrow vertex $\chi^2/\text{dof} < 6$ and track $\chi^2/\text{dof} < 5$
- both tracks identified as muons
- one track with $p_T > 1.5 \text{ GeV/c}$

LHCb: J/ψ @ p-p collisions

- J/ ψ signal in 19.3 million minimum bias events
- fit with Crystal-Ball function: Gaussian ${\rm J}/\psi$ + exponential background
- mass resolution \sim 11 MeV/c²
- \bullet S/B \sim 4
- \bullet expected 3.2 \times 10^6 events in 5 pb $^{-1}$ at 8 TeV
- efficiency correction estimated using Monte Carlo

LHCb: J/ψ @ p-p collisions

- J/ ψ signal in 19.3 million minimum bias events
- fit with Crystal-Ball function: Gaussian ${\rm J}/\psi$ + exponential background
- mass resolution \sim 11 MeV/c²
- \bullet S/B \sim 4
- expected 3.2 \times 10^6 events in 5 pb^{-1} at 8 TeV
- efficiency correction estimated using Monte Carlo

LHCb: identifying prompt J/ψ

- $\bullet \sim$ 8% J/ ψ come from b decays
- approximation of the proper time of the b quark in the forward direction

$$t = \frac{dz}{p_z^{J/\psi}} \times m^{J/\psi}$$

- \hookrightarrow prompt Gaussian component: J/ψ produced in the primary vertex
- \hookrightarrow prompt background: extracted from the J/ ψ mass sidebands
- \hookrightarrow exponential component: J/ψ 's produced from b decays
- \hookrightarrow long tail: due to the association of the J/ ψ to the wrong primary vertex

Measuring quarkonia in CMS

Ideally suited to study quarkonia production in the di-muon channel.

- detectors for muon detection
- large rapidity coverage $|\eta|$ < 2.4
- strong magnetic field ∼ 4 T (∼ 1.8 T)
- matching between tracks in the muon chambers and in the silicon tracker
- p_T resolution (10 GeV/c) ~ 0.8 2%
- ullet minimum μ momenta:
 - \hookrightarrow barrel $|\eta| < 0.8$: $p_T^{\mu} > 3.5$ GeV/c
 - \hookrightarrow endcap: $p_I^{\mu} > 4.0 \text{ GeV/c}$

Z (cm)

Measuring quarkonia in CMS

Ideally suited to study quarkonia production in the di-muon channel.

- detectors for muon detection

 - (endcap)
 - (barrel and endcap, trigger)
- large rapidity coverage $|\eta| < 2.4$
- strong magnetic field ~ 4 T (~ 1.8 T)
- matching between tracks in the muon chambers and in the silicon tracker
- p_T resolution (10 GeV/c) ~ 0.8 2%
- minimum μ momenta:
 - \hookrightarrow barrel $|\eta| < 0.8$: $p_T^{\mu} > 3.5$ GeV/c
 - \hookrightarrow endcap: $p_I^{\mu} > 4.0 \text{ GeV/c}$

CMS: J/ψ @ p-p collisions

- $\bullet \sim 25000 \text{ J}/\psi \text{ per 1 pb}^{-1} \text{ (1-2 days)}$
- expected p_T spectrum after 3 pb⁻¹ ($\sim 75000 \text{ J}/\psi$)
- J/ ψ yield is extracted by fitting the dimuon mass distribution, separating the signal peak from the underlying background continuum
- observed J/ψ yield:
 - \hookrightarrow direct J/ψ

 - \hookrightarrow decays from χ_c and ψ'
- non-prompt fraction estimated using the pseudo proper decay length

CMS: J/ψ @ p-p collisions

- $\sim 25000 \text{ J}/\psi \text{ per 1 pb}^{-1} \text{ (1-2 days)}$
- expected p_T spectrum after 3 pb⁻¹ $(\sim 75000 \text{ J}/\psi)$
- J/ψ yield is extracted by fitting the dimuon mass distribution, separating the signal peak from the underlying background continuum
- observed J/ψ yield:
 - \hookrightarrow direct J/ψ

 - \hookrightarrow decays from χ_c and ψ
- non-prompt fraction estimated using the pseudo proper decay length

• 0.5 nb^{-1} : one month at $4 \times 10^{26} \text{ cm}^{-2} \text{s}^{-1}$ and 50% machine operation efficiency, assuming no quarkonia suppression

$dN_{ch}/d\eta\mid_{\eta=0}$	$\Delta \eta$	S/B	$N(J/\psi)$
2500	η <2.4	1.2	184000
2500	$ \eta < 0.8$	4.5	11600
5000	$\mid \eta \mid <$ 2.4	0.6	146000
5000	$\mid \eta \mid <$ 0.8	2.8	12600

• transverse momentum spectrum up to 40 GeV/c

- signal + background \hookrightarrow integrated luminosity: 0.5 nb⁻¹ $dN_{ch}/d\eta \mid_{\eta=0} = 5000$
 - → background:
 - 90 % from $\pi^{\pm}/K^{\pm} \rightarrow \mu + X$
 - open heavy flavour (D,B) meson decays (BR \sim 18% (38%) for c(b))
- J/ ψ like-sign subtraction $dN_{ch}/d\eta \mid_{\eta=0} = 2500 \text{ and } |\eta| < 0.8$ $dN_{ch}/d\eta \mid_{\eta=0} = 5000$ and $|\eta| < 2.4$
- mass resolution ∼ 35 MeV/c²

- signal + background \hookrightarrow integrated luminosity: 0.5 nb⁻¹ $dN_{ch}/d\eta \mid_{\eta=0} = 5000$ → background:
 - 90 % from $\pi^{\pm}/K^{\pm} \rightarrow \mu + X$
 - open heavy flavour (D,B) meson decays (BR \sim 18% (38%) for c(b))
- J/ ψ like-sign subtraction $dN_{ch}/d\eta \mid_{\eta=0} = 2500 \text{ and } |\eta| < 0.8$ $dN_{ch}/d\eta \mid_{\eta=0} = 5000$ and $|\eta| < 2.4$
- mass resolution ∼ 35 MeV/c²

- signal + background \hookrightarrow integrated luminosity: 0.5 nb⁻¹ $dN_{ch}/d\eta \mid_{\eta=0} = 5000$ → background:
 - 90 % from $\pi^{\pm}/K^{\pm} \rightarrow \mu + X$
 - open heavy flavour (D,B) meson decays (BR \sim 18% (38%) for c(b))
- J/ ψ like-sign subtraction $dN_{ch}/d\eta \mid_{\eta=0} = 2500 \text{ and } |\eta| < 0.8$ $dN_{ch}/d\eta \mid_{\eta=0} = 5000$ and $|\eta| < 2.4$
- mass resolution \sim 35 MeV/c²

Measuring quarkonia in ALICE

- covers central (| η | < 0.9) and forward (-4.0 < η < -2.5) regions
- \bullet coverage extends to $p_{\mathcal{T}} \sim 0$ for quarkonia
- channels: electronic, muonic and hadronic
- high precision vertexing in the central barrel
- detection channels: e^+e^- and $\mu^+\mu^-$

ALICE: quarkonia to dielectrons for $|\eta|$ <0.9

- tracking (ITS, TPC, TRD) + vertexing (ITS)
 + electron identification (TPC, TRD) +
 trigger (TRD)
- expected statistics 1 month of 10 % central Pb-Pb, $dN_{ch}/dy = 3000$, L=5 × 10^{26} cm⁻²s⁻¹, 2 × 10^{8} events, M±1.5 σ

state	S(×10 ³)	B(x10 ³)	S/B	$S/\sqrt{S+B}$
J/ψ	121.1	88.2	1.4	265
Υ,	1.3	0.8	1.6	28
Υ'	0.46	0.8	0.6	13

- ullet secondary vs prompt J/ψ
 - \sim 22(39) % of J/ ψ $(\psi^{'})$ come from beauty hadron decay
 - J/ ψ originating from B decays are produced at large distance from the primary vertex
- mass resolution ∼30 MeV/c²

ALICE: quarkonia to dimuons for -4 $<\eta<$ -2.5

muon spectrometer

- \hookrightarrow absorbers
- \hookrightarrow tracking system
- \hookrightarrow trigger chambers
- \hookrightarrow dipole magnet \sim **0.7** T

expected statistics

1 month central Pb-Pb (0 <b<3 fm),

 $L=5 \times 10^{26} \text{ cm}^{-2} \text{s}^{-1}$. $M+2\sigma$

state	S(x10 ³)	B(x10 ³)	S/B	$S/\sqrt{S+B}$
J/ψ	130	680	0.20	150
ψ'	3.7	300	0.01	6.7
Υ.	1.3	0.8	1.7	29
Υ΄	0.35	0.54	0.65	12
r''	0.20	0.42	0.48	8.1

- J/ ψ : large statistics, p_T=0-20 GeV/c
- $ullet \psi'$: poor significance
- Υ, Υ': p_T=0-8 GeV/c
- $\bullet \Upsilon''$: 2-3 runs needed
- mass resolution ∼70 MeV/c²

ALICE: quarkonia to dimuons for -4 $<\eta$ <-2.5

muon spectrometer

- \hookrightarrow absorbers
- \hookrightarrow tracking system
- \hookrightarrow trigger chambers
- \hookrightarrow dipole magnet \sim 0.7 T

expected statistics

1 month central Pb-Pb (0 <b<3 fm),

 $1-5 \times 10^{26} \text{ cm}^{-2} \text{s}^{-1} \text{ M} + 2\sigma$

L=5 × 10 CIII 3 , W±20				
state	S(x10 ³)	B(x10 ³)	S/B	S/√ <u>S + B</u>
J/ ψ	130	680	0.20	150
$\psi^{'}$	3.7	300	0.01	6.7
Υ.	1.3	0.8	1.7	29
Υ'	0.35	0.54	0.65	12
_ r''	0.20	0.42	0.48	8.1

- J/ ψ : large statistics, p_T=0-20 GeV/c
- $\bullet \ \psi'$: poor significance
- Υ , Υ' : $p_T=0-8 \text{ GeV/c}$
- $\bullet \Upsilon'' \cdot 2-3$ runs needed
- mass resolution \sim 70 MeV/c²

${\rm J}/\psi$ family Uncorrelated bkg subtracted

ALICE: suppression scenario

dimuon channel, statistics: 1 month Pb-Pb collisions, L=5·10²⁶ cm⁻²s⁻¹

assumptions

no nuclear absorption no energy loss of b quarks no combinatorial bkg

with suppression-1

$$T_c$$
=270 MeV
 T_D/T_c =1.7 for J/ ψ
 T_D/T_c =4.0 for Υ

$$\label{eq:mith_suppression-2} \begin{split} \frac{\text{with suppression-2}}{\mathsf{T}_c = 190 \text{ MeV}} \\ \mathsf{T}_D/\mathsf{T}_c = 1.21 \text{ for J}/\psi \\ \mathsf{T}_D/\mathsf{T}_c = 2.9 \text{ for } \Upsilon \end{split}$$

ALICE: suppression scenario

dimuon channel, statistics: 1 month Pb-Pb collisions, L=5·10²⁶ cm⁻²s⁻¹

assumptions

no nuclear absorption no energy loss of b quarks $T_D/T_c=1.7$ for J/ψ no combinatorial bkg

with suppression-1

$$T_c$$
=270 MeV
 T_D/T_c =1.7 for J/ψ
 T_D/T_c =4.0 for Υ

$$\begin{array}{l} {\rm with~suppression-2} \\ \overline{\rm T}_c {=} 190~{\rm MeV} \\ \overline{\rm T}_D/\overline{\rm T}_c {=} 1.21~{\rm for~J/}\psi \\ \overline{\rm T}_D/\overline{\rm T}_c {=} 2.9~{\rm for~\Upsilon} \end{array}$$

Ability to distinguish between different suppression scenarios!

Conclusions

- quarkonia are a powerful tool to probe the QCD in p+p, p+A and A+A collisions:

 - \hookrightarrow A+A: sensitive probe of QGP properties
 - \hookrightarrow p+A: cold nuclear matter effects
 - \hookrightarrow produced via gg fusion: probe of low-x QCD
- LHC will help to clarify the quarkonia production picture
- large statistics of quarkonia are expected at LHC
- ALICE/ATLAS/CMS have complementary capabilities
- charmonia performance

ALICE $\mu^+\mu^-$	ALICE e^+e^-	CMS $\mu^+\mu^-$	ATLAS $\mu^+\mu^-$
70 MeV/c ²	30 MeV/c ²	35 MeV/c ²	68 MeV/c ²

• more analysis not discussed here...