

Status of the SPES project

Selective Production of Exotic Species

Gianfranco Prete LNL-INFN
On behalf of the SPES Collaboration

SPES infrastructure - layout

SPES layout: ISOL facility installation phases

• Phase 1. 2016 - Building + First operation with the cyclotron NOW!

Phase 2. 2017-18 - From C.B. to REQ + SPES target, LRMS, 1+ Beam Lines

• Phase 3. 2019 – 20 - HRMS-BeamCooler + RFQ to ALPI

2019: phase2b no-reaccelerated radioactive beams

The SPES cyclotron

Built by BEST Cyclotron Systems

- Negative Hydrogen ion (H-)
- Simultaneous double beam extraction
- 35 to 70 MeV variable energy
- 700 µA combined beam current (to be upgraded to 1 mA)

- -Factory Acceptance Tests (FAT) passed
- -Cyclotron arrived at LNL in May 2015
- -Dual beam operation demonstrated
- -Cyclotron commissioning at final step (endurance test to be performed)

Cyclotron beam operation:

6x10⁻⁸ Torr

Beam test on 50kW INFN target

Beam profile with wobbler ON

Beam Dump 50kW

SPES ISOL system

System under operation for source commissioning.
Updated version (radiation hardness improved) under construction.

SPES ISOL system

Plasma source

INFN

and beam production

Reduced radioactivity out of the bunker

Target in-beam power test Up to 4 kW proton beam in target.

- •Stable temperatures
- •Stable vacuum (3 10⁻⁵ mbar)

iThemba LABS 2014. (SiC target)

ion source complex

beam	ion. eff. (%)	hot- cavity temp. (°C)	hot- cavity mater ial	
Na	47,6	2200	Та	
K	55,4	2200	Та	1
Ga	1,4	2200	Та	1
Rb	54,5	2200	Та	
Sr	18,5	2200	Та	
In	3,2	2200	Ta	6
Cs	43,2	2200	Ta	
Ва	58,8	2200	Та	opt
La	20,1	2200	Та	'ste

Ion source selectivity

Evaluated beam selectivity with mass selection 1/200

Instrumentation@SPES: Tape system

Collaboration ALTO-INFN-iThembaLabs

3.20 F.

Tape station based on Orsay design (BEDO)

Diagnostics for SPES: tape stations to characterize RIBs

HPGe detecto

Auxiliary plastic det.

G. Benzoni (INFN Mi) contact person

Beam characterization: Release Curve COOLER 3TE7 Beam Composition and **Isotopic Yields** β_decay experiments -3.20 F.

Beta decay station as a permanent and flexible setup

- Tape station + β detector
- Coupling to HPGe, LaBr3, neutron detectors etc...

SPES Lol's for beta decay station

Astrophysics: input for r and s process

Nuclear structure: Shell evolution and nuclear shape

Exotic decay : Pygmy resonance by β _decay

Additional instrumentation and collaborations

Decay spectroscopy techniques to study neutron-rich fission fragments at SPES

Krzysztof P. Rykaczewski, Robert Grzywacz, Carl J. Gross, Daniel W. Stracener, Yuan Liu Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6371, USA in collaboration with

C. Mazzocchi, A. Korgul, M. Karny, K. Miernik, U. of Warsaw, Warsaw, Poland W. Krolas, Institute of Nuclear Physics PAN, Krakow, Poland

MTAS = Modular Total Absorption Spectrometer

VANDLE = Versatile Array of Neutron Detectors for Low Energy

3Hen = Helium-3 Neutron Detectors Hybrid-3Hen = 3Hen + Clover Ge

The physics of neutron-rich fission fragments

- nuclear structure evolution as N >> Z
- spectroscopy near and above the neutron separation energy
- rapid-neutron capture half-lives and beta-delayed neutron branchings
- societal impact in better data for modeling neutron-rich environments such as nuclear reactors
- more detailed understanding of the anti-neutrino spectra from reactors

Third International SPES Workshop

10-12 October 2016 INFN Laboratori Nazionali di Legnaro

Presented 47 Letters of Intents

Beam transport and reacceleration

Phase 2A: Installation of Charge Breeder and n+ beam line

- Hall prepared
- Assembly and connection of 1+ source and CB in 2017

Exotic Beam RFQ Injector for ALPI (7 m, 6 modules)

- Energy 5.7 -> 727.3 keV/A [β=0.0395] (A/q=7)
- Beam transmission >93% for A/q=3÷7
- RF power (four vanes) 100 kW (f=80 MHz)
 for up to 1 mA beam (...future higher I stable beams)
- Mechanical design and realization, similar to the Spiral2 one, takes advantage of IFMIF technological experience

Materials ordered

- Construction of vanes: tender completed (July 2016)
- Prototype in preparation

Beam dynamics, EM design, Mechanical design and Thermal Analysis COMPLETED

200 kW RF amplifier (175 MHz→ 80 MHz tuning required); 200 kW Power Coupler developed

Matching into ALPI SC linac

CONCLUSIONS

- SPES is in the construction phase
- Infrastructures and Cyclotron are completed
- In the next two years the ISOL system and the Charge Breeder will be installed
- In 2019 radioactive beams with no-reacceleration will be available
- Reacceleration will be completed in 2021 using ALPI to reach 10-11 MeV/n
- SPES is partner of EURISOL_DF
 - An European distributed facility for radioactive beams will offer a wide alternatives of exotic beams to the international nuclear physics community