International large research infrastructure of JINR, Dubna.

M.G.Itkis

NUPECC Meeting, January 2017, Darmstadt, Germany

NICA is aimed at generation of intense heavy ion and polarized nuclear beams for searching the baryonic matter of a high density at high (comparatively) temperature and investigation of polarization phenomena.

NICA Collider parameters:

 $\sqrt{s_{NN}} = 4-11$ GeV heavy ion beams @ luminosity L~10²⁷ cm⁻² c⁻¹ (Au), and polarized p↑ (d↑) of $\sqrt{s_{NN}}$ up to 26 (13) GeV at L ~ 10³² cm⁻² c⁻¹

QCD matter at NICA :

- Highest net baryon density
- Energy range covers onset of deconfinement
- Complementary to the RHIC LES, FAIR CBM and CERN (NA61) experimental programs

Freeze-out conditions

Present and future HI experiments/machines

NICA facility

In operation

Under construction

NICA @ Heavy Ion mode

lon sources

JINR Krion-6T (ESIS) for NICA

B = 6 (5.4) TEe = 25 (15) keV J_el (design) = 1000 A/cm²

Au³⁰⁺³²⁺ achieved 6*10⁸ ppp, (1*10⁹)

Peak currect = 10 mA/pulse $t_{ion} = 20 \text{ ms} @ 50 (100) \text{ Hz}.$ Ion of Au⁵¹⁺ ÷ Au⁵⁴⁺ generated

Polarized particle (p, d, He³) source up to <u>10¹⁰ p/pulse, 80% polarization</u>

NICA collider magnets

Double-aperture SC Magnets for the NICA collider:

- 80 + 8 Dipole Magnets
- 86 + 12 Quadrupole Lenses
- 88 Corrector Magnets

Start of serial production and cryogenic tests of the magnets is scheduled for 2017.

The NICA Collider: two of 503 m superconducting rings in the common cryostat system, separated vertically by 32 cm

Collider lattice: FODO, 12 cells x 90⁰ each arc

THI MILL

AND THE REAL PROPERTY OF

Electron cooling & stochastic cooling

Number of bunches	22									
rms bunch length, m	0.6									
β-function in IP, m		0.35								
Kin. energy of Au ⁷⁹⁺ , GeV/u	1.0	3.0	4.5							
Number of ions per bunch	2.0·10 ⁸	2.4·10 ⁹	2.3·10 ⁹							
Δ <i>p</i> / <i>p</i> _{rms} , 10 ⁻³	0.55	1.15	1.5							
ε _{rms} , (h/v) π mm·mrad	1.1/0.95	1.1/0.85	1.1/0.75							
Luminosity, cm ⁻² s ⁻¹	0.6·10 ²⁵	1·10 ²⁷	1·10 ²⁷							
IBS growth time, s	160	460	1800							

NICA @ Start-up configuration

The beginning of the NICA accelerator complex commissioning is scheduled for 2020

The complex will be commissioned with

- Injectors chain
- Transfer channels

- Collider in start up version, i.e: with RF-1 and RF-2, but without RF-3 with Stoch. Coolg system - one channel per ring (long. cooling) without Electron Cooler without feed-back system

It will allow us to provide collider operation in the energy range of $\sqrt{s_{NN}} \sim 5 - 9 \text{ GeV} (197 \text{Au}^{79+} \text{ ions})$ at the luminosity of

 $L_{\text{start}} \le 5 \times 10^{25} - 3 \times 10^{26} [\text{cm}^{-2} \cdot \text{s}^{-1}]$

Advantage in luminosity when full-scale NICA configuration: a factor of 58 (@3 GeV) scaled to 13 (@4.5 GeV) times

NICA: 3 detectors

SPD (Spin Physics Detector) at the Collider

Stage III – after 2022

The whole Complex comprises several Objects to be commissioned:

Support of President, Presidential Council, Ministry, NRC KI, Russian institutes, European and Asian Agencies

Status of the NICA mega-science @ JINR

ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ

РАСПОРЯЖЕНИЕ

от 27 апреля 2016 г. № 783-р

москва

О подписании Соглашения между Правительством Российской Федерации и международной межправительственной научно-исследовательской организацией Объединенным институтом ядерных исследований о создании и эксплуатации комплекса сверхпроводящих колец на встречных пучках тяжелых ионов NICA

1. В соответствии с пунктом 1 статьи 11 Федерального закона "О международных договорах Российской Федерации" одобрить представленный Минобрнауки России согласованный с МИДом России, Минфином России, Минэкономразвития России и международной межправительственной научно-исследовательской организацией Объединенным институтом ядерных исследований проект Соглашения между Правительством Российской Федерации и международной межправительственной научно-исследовательской организацией Объединенным институтом ядерных исследований о создании и эксплуатации комплекса сверхпроводящих колец на встречных пучках тяжелых ионов NICA (прилагается).

2. Поручить Минобрнауки России провести переговоры с международной межправительственной научно-исследовательской организацией Объединенным институтом ядерных исследований и по достижении договоренности подписать от имени Правительства Российской Федерации указанное в пункте I настоящего распоряжения Соглашение, разрешив вносить в прилагаемый проект изменения, On 27th April 2016 the RG Prime-minister issued the Governmental Decree about establishment of the NICA mega-science on Russian territory at JINR. Russia and JINR co-invest to the "NICA Complex. Agreement between RF Government and JINR (signed on 2nd June 2016) in the frame of Decree formulates basic principles of the setting and development of the International collaboration "Complex NICA.

We assume that in coming years similar Agreements will be prepared, agreed and signed with other countries and International Scientific centers, expressed their interest to participate and contribute to NICA.

We invite new countries to join NICA (Germany, China, India, SAR, ...) and leading International centers (CERN, FAIR, ...), also Universities.

Support of President, Presidential Council, Ministry, NRC KI, Russian institutes, European and Asian Agencies

SUPERHEAVY ELEMENT FACTORY

Superheavy Element Research

	No.	190	
T	A)	
mm	IIIIII		100 () () () () () () () () () (
)

1

Водород 1

13 59844

3 _N Бериллий 4 _N

H

1,00794 -299,34 Hydrogen -292,87

Литий

JINR

Dubna

AASOPATOPHU DAEPHUA PEARUNO

13

14

15

16

Периодическая таблица элементов д.И. Менделеева

D.I. Mendeleev's Periodic Table of Elements B VINTER C ILW N 10000 8 0 100 F

Li	5,39172 534	Be	9,32263		-		Uni	au	10		-			cit	•	- CIN		-	-	101			-	B	8,29903 2340	C	11,260	N	14,53414 1,2506	0	13,618	F	17,42292	Ne	21,564
Lithium	1342	Beryllium	2473					_			-													Boron	4000	Carbon	cyan, and	Nitrogen	-195,79	Oxygen	-182,95	Fluorine	-188,12	Neon	-245
Натрий	11 1	Магний	12 "																					Алюмяния	ñ 13,	Кремний	14,,,	Фосфор	15 %	Cepa	16 3	Хлор	17 %	Аргон	18
Na	5,13907 970	Mg	7,64624 1740	3			4	5	5	6	;	7		8	3	9	9	1	0	11	1	1	2	Al	5,98577 2702	Si	8,15169 2330 sp.	Р	10,48669 1820	S	10,36004 2070	Cl	12,96764 3,214	Ar	15,799 1,79
22,98976 Sodium	8 97,72 883	24,3050 Magnesium	450 1090																					26,981539 Aluminum	660,32 2519	28,0855 Silicon	1414 3265	30,97376 Phosphore	44,15 277	32,066 Sulfur	115,21 444,6	35,4527 Chlorine	-381,5 -34,04	39,948 Argon	-189 -185
Калий	19 4	Кальций	204	Скандий 2	1.1.1	Титан	22 344	Ванадий	23	Хром	24 344	Марганец	25	Железо	26	Кобальт	27,44	Никель	28,14	Медь	29356	Цинк	30 _{34³45¹}	Галлий	31.4	Германий	324	Мышьяк	33 4	Селен	34 4	Бром	35 4	Криптон	36
K	4,34066 802	Ca	6,11316 1540	Sc	6,56144 2999	Ti	6,8282 4500	V	6,7463 5960	Cr	6,76664 7200	Mn	7,45402	Fe	7,9024	Со	7,8818	Ni	7,6398	Cu	7,72638	Zn	9,39405	Ga	1,99930 5904	Ge	7,900 5350	As	9,8152 5727	Se	9,75238 4810	Br	11,81381 3119	Kr	13,99
39,0983 Potassiur	63,28 759	40,078 Calcium	842 3454	44,95591 Scandium	1541 2630	47,88 Titanium	1668	50,9415 Vanadium	1920 3407	51,9961 Chromium	1906 2671	54,93805 Manganese	1246	55,847 Iron	1538	58,93320 Cobult	1495	58,6934 Nickel	1455 2913	63,546 Copper	1084,62 2562	65,39 Zinc	479,53 907	69,723 Gallium	29,76 2204	72,61 Germaniur	938,25 n 2833	74,92159 Arsenic	Cy61.614	78,96 Selenium	221 685	79,904 Bromine	-7,2 58,78	83,80 Krypton	-197 -153
Рубидий	37 5	Стронций	38 "	Иттрий 3	19 ₄₅₅	Циркона	aŭ 40 ₄₀₅₁	Ниобий	41_{400}	Молибден	4240	Технеций	43	Рутений	44	Родий	45 405	Паллади	a 46 ₄₀ .	Серебро	47 _{40%}	Кадмий	48,05	Индий	49.,	Олово	50_{γ}	Сурьма	51 ,,	Теллур	52,,	Иод	53 🧋	Ксенон	54
Rb	4,177137 1532	Sr	5,89484 2540	Y	6,217	Zr	6,63390	Nb	6,75885 8570	Mo	7,09243	Tc	7 28 11490	Ru	7,36050	Rh	7,45890	Pd	8,3369	Ag	7,57634	Cd	8,99367 8642	In	5.78636 7300	Sn	7,34381 7280	Sb	8,64 6684	Te	9,0096 6250	I	10,45126 4930	Xe	12,129
85,4678 Rubidium	39,31 688	87,62 Strontium	777 1382	88,90585 Yttrium	1526 3337	91,224 Zirkoniu	m 1835	92,90638 Niobium	2477 4744	95,94 Molybdem	2623 um 4639	[98] Technetius	2157 4265	101,07 Rutheniur	2334 4150	102,9055 Rhodium	0 1964	106,42 Palladium	1554,9	107,8682 Silver	962,78 2142	112,411 Cadmium	328,9 765	114,818 Indium	156,6 2972	118,710 Tin	231,93 2602	121,757 Antimony	630,63 1,587	127,60 Tellurium	449,51 988	126,90447 lodine	113,7 194,4	131,29 Xenon	-111.
Цезий	55 🥁	Барий	56 🥁	Лантан 5	7.	Гафний	72	Тантал	73 Mes	Вольфран	74,00	Рений	75	Осмий	76,56	Ирядий	77 56	Платника	78	Золото	79 ₅₅₆	Ртуть	80,50	Таллий	81,,,	Свинец	82,,,	Висмут	83 _{te} :	Полоний	84	Астат	85 (4)	Радон	86
Cs	3,81790 1873	Ba	5,21170 3510	La	5,5770 6146	Hf	6,82507	Та	7,95	W	7,98 19350	Re	7,88 21530	Os	8,7 22480	Ir	9,1 22421	Pt	9,0 21450	Au	9,22567	Hg	10,43750 13546,2	Tl	6,30829 11850	Pb	7,41666 (1350	Bi	7,289 9800	Po	8,41671 9400	At	9,0	Rn	10,748
132,9054 Cesium	3 28,44 671	137,327 Barium	727 1897	138,9055 Lanthanum	920 3454	178,49 Hafnium	2233	180,9479 Tantalum	3017 5458	183,84 Tungsten	3422 5555	186,207 Rhenium	3186 5596	190,23 Osmium	3033 5012	192,22 Iridium	2445	195,08 Platinum	1768,4	196,96654 Gold	1064,18 2856	200,59 Mercury	-38,83 356,73	204,3833 Thallium	304 1473	207,2 Lead	327,46 1749	208,98037 Bismuth	271,4 1564	[209] Polonium	254 962	[210] Astatine	302. 337	[222] Radon	i.
Франций	87	Радий	88 31	Актиний 8	39. Mari	Резерфо	рдий 104	Дубний	105	Сиборгий	106	Борий	107	Хассий	108	Мейтнери	ий 109	Дармитал	(THE 110	Ренттений	111	Коперния	сий 112	(Нихоний)	113	Флеровий	114	(Московий) 115	Лявермори	nii 116	(Теннессии) 117	(Oranecon	0 11
Fr	4,073	Ra	5,27992 5000	Ac	5,17	Rf	м	Db	64	Sg	66	Bh	ы	Hs		Mt	ы	Ds	ы	Rg	66	Cn		Nh		FI		Mc		Lv		Ts		Og	
[223] Francium	27 677	226,025 Radium	700 1140	[227] Actinium	1050 3(98	[261] Rutherfo	rdium	[262] Dubnium	_	[266] Seaborgiu	m	[262] Bohrium		[269] Hassium		[268] Meitneriu	-	[269] Darmstad	ltium	[272] Roentgenin	100	[285] Copernicia	um	(Nihonium)		Flerovium		(Moscovius)	Livermoriu	m	(Tennessine		(Oganesso	m)

Лантаноиды Lanthanides

Церий	58 ₄₀₀	Празеодим 59	Неодим	60 "	Прометий б	1.	Самарий	62 "	Европий	63 "	Гадолиний б	4.N	Тербий	65 ₄	Диспрозий	66 ₄₀	Гольмий	67 «	Эрбий	68 4	Тулий	69 «	Иттербий	70 4	Лютеций	71 47M	Bo
Ce	3,5382	Pr 5.4	Nd	5,525 7008	Pm	5,55 7264	Sm	5,6437 7529	Eu	5,6704 5244	Gd	6,150 2901	Tb	5,8639 8230	Dy	5,9389 8551	Но	6,9216 8795	Er	6,1078 9066	Tm	6,35431 9321	Yb	6,25416 6965	Lu	5,42585 9541	F
140,115 Cerium	799 3424	140,90765 933 Praseodymium 3538	144,24 Neodymia	1054 m 3066	[145] Promethium	1042 3000	150,36 Samarium	1072	151,965 Europium	822 1996	157,25 Gadolinium	1314 3264	158,92534 Terbium	1359 3221	162,50 Dysprosium	1433 2563	164,93032 Holmium	1472 2094	167,26 Erbium	1529 2682	168,93421 Thulium	L 1545 1946	173,04 Ytterbium	824 1194	174,967 Lutetium	1663 3293	1.0 Hy

Актиноиды Actinides

Торий	90 _{3/M}	Протактиний 91	(65 ¥)	ран 92	166	Нептуний 93	Char I	Плутоний	94 _{sr}	Америций	95 _{st}	Кюрий	96 _{stut}	Берклий	97 _{sc}	Калифорний9	8,	эйнштейний 99		Фермий 100	Mengenennik101	Нобели	102	Лоуренсий 1	03
Th	6,08 11790	Pa	5,89 1370	U 62	19405	Np 5	2657	Pu	6,06 19540	Am	5,993 13670	Cm	6,62 13510	Bk	6,23 14790	Cf	6.30	Es **	2	Fm	Md "	No	6,65	Lr	-
232,0381 Thorium	1750 4790	231,03588 Protactinium	1572 2 U	38,0289 Iranium	1135 4131	[237] Neptunium	644 3982	[244] Plutonium	640 3228	[243] Americium	1176 2607	[247] Curium	1345	[247] Berkelium	1050	[251] Californium	900	[252] so Einsteinium	0	[257] Fermium	[258] 827 Mendelevium	[259] Nobeliu	n 127	[262] Lawrencium	1427

Н - символ/symbol 1,00794 - атомная масса/atomic mass

1.001 - Электронная конфигурации Telectron configuration 13.59844 -1-й потенцика ноникации, all Jati Ionization potential, eV 0.0899 - neutrocite, jet / xki / density, kg / m3 -250,34 - температура лизамения.c// heiling temperature, oC -352,87 - температура жизамения.c// heiling temperature, oC

18

Не мляти

Гелий

4,0026 -272.3 Helium -368.9

Неон

17

9 %

2 .

10

S-3AEMEHTЫ/ELEMENTS d-3AEMEHTЫ/ELEMENTS p-3AEMEHTЫ/ELEMENTS 1-3AEMEHTЫ/ELEMENTS The future of SHE research we associate with the construction of the Superheavy Elements Factory.

Superheavy Elements (SHE) Factory – the Goals

> Experiments at the extremely low (σ <100 fb) cross sections:

- Synthesis of new SHE in reactions with ⁵⁰Ti, ⁵⁴Cr ...(119, 120);
- Shaping of the region of SHE (synthesis of new isotopes of SHE);
- Study of decay properties of SHE;
- Study of excitation functions.

Experiments requiring high statistics:

- Nuclear spectroscopy of SHE;
- Precise mass measurements;
- Study of chemical properties of SHE.

SHE Factory

High-current cyclotron DC-280

SHE Factory Building

New facilities:

- New gas-filled separator Pre-separator for SHE chemistry Separator SHELS
- Etc.

DC-280 cyclotron – stand-alone SHE factory

- Synthesis and study of properties of superheavy elements.
- Search for new reactions for SHEsynthesis.
- Chemistry of new elements.

]	DC280 (expe E=4÷8 Me	cted) V/A
Ion	Ion energy [MeV/A]	Output intensity
⁷ Li	4	1×10 ¹⁴
¹⁸ O	8	1×10 ¹⁴
⁴⁰ Ar	5	6×10 ¹³
⁴⁸ Ca	5	0,6- 1,2×10 ¹⁴
⁵⁴ Cr	5	2×10 ¹³
⁵⁸ Fe	5	1×10 ¹³
¹²⁴ Sn	5	2×10 ¹²
¹³⁶ Xe	5	1×10 ¹⁴
238U	7	5×10 ¹⁰

DC-280 Main Parameters

Ion source	DECRIS-4 - 14 GHz DECRIS-SC3 - 18 GHz
Injecting beam potential	Up to 100 kV
A/Z range	4 ÷7
Energy	4÷8 MeV/n
Magnetic field level	0.6÷1.35 T
K factor	280
Gap between plugs	400 mm
Valley/hill gap	500/208 mm/mm
Magnet weight	1000 t
Magnet power	300 kW
Dee voltage	2x130 kV
RF power consumption	2x30 kW
Flat-top dee voltage	2x14 kV

Assembling of the DC280 magnet

SHE Factory. Time-schedule.

- Completion of the SHE Factory building and its engineering systems (2016 – June 2017)
- Assembling the DC-280 cyclotron. Installation of new Gas-Filled Recoil Separator. (September 2016 – December 2017)
- First experiments (2018)

New experimental setup - velocity filter SHELS (Separator for Heavy ELement Spectroscopy)

This year 1st prize of JINR in the field of instruments and methods

New focal plane detector GABRIELA

GABRIELA - Gamma Alpha Beta Recoil Investigation with the Electromagnetic Analyser

New FLNR gas-filled separator (contracted)

Technical Design Report No 412923

Reaction	Transmission
²⁴⁴ Pu(⁴⁸ Ca,3n) ²⁸⁹ 114	60 %
²⁴⁴ Pu(⁵⁸ Fe,4n) ²⁹⁸ 120	75 %

2016÷2024 years FLNR accelerators running, construction and modernization schedule (2016)

Year	2016	2017	2018	2019	2020	2021	2022	2023	2024
Accelerator									
DC280	Assem	bling							
		tuning	5000	5000	5000	5000	5000	5000	5000
U400M- U400MR	5000 5000		5000	Reconstruction	5000	5000	5000	5000	5000
U400-	5000	5000	5000	5000	2000				
U400R					Reasse			2000	5000
						Building			
							Assembling		
								Beam tuning	
-									
Beam time on the targets	<u>10 000</u>	<u>10 000</u>	<mark>15 000</mark>	<u>10 000</u>	<mark>12 000</mark>	<u>10 000</u>	<u>10 000</u>	12 000	<mark>15 000</mark>

Hour - annual beam time on the targets.

Neutrino program

Kallain APS (DANSS)

Бруно Понтекоры

Astrophysical neutrino sources

Coherent neutrino-nucleus scattering (vGEN) Precise measurements of neutrino oscillations (Daya Bay, BOREXINO) Neutrino mass hierarchy (JUNO, NOvA) Neutrinoless 2β –Decay search: (SuperNEMO, GERDA, Majorana)

luster center

"White Book" documents the JINR neutring program

Every experiment — participant of the neutrino program — is described in a uniform format in the Book (about 300 pages):

About 200 (100) participants (scientists) take part in the JINR neutrino program, 60 of them are younger 35 years old. JINR member-states are strongly involved. Internationality — NOvA, JUNO, EDELWEISS, SuperNEMO, ... \rightarrow http://dlnp.jinr.ru/en/neutrino-research

BAIKAL-GVD Project Financing Schedule for 2017–2023 (M\$):

JINR's Large-Scale Basic Facilities

The IBR-2M pulsed reactor of periodic action is included in the 20-year European strategic programme of neutron scattering research.

movable reflector

Additiona

Fuel: PuO_2 , Average power: 2 MW (8·10¹² n/cm²/s), 5Hz, Pulsed power:1500 MW (5·10¹⁵ n/cm²/s), width: 215/320 µs, 14 neutron channels.

Nanosystems and Nanotechnologies

Novel Materials

Biomedical Research

Fe (3-5 нм) Cr (1-2 нм)

Engineering diagnostics. Earth Sciences

Fundamental and applied research in condensed matter physics and related fields: biology, medicine, material sciences, geophysics, engineer diagnostics - aimed at probing the structure and properties of nanosystems, new materials, and biological objects, and at developing new electronic, bio- and information nanotechnologies.

Thank You!