Nuclear Physics at CERN – a selection

E.Elsen

Large range of accelerators for Nuclear Physics

- ISOLDE
 - HIE-ISOLDE
- nTOF
- PS
- · SPS
 - Fixed target
 - HiRADMat
- · LHC
 - ALICE
 - · ATLAS, CMS, LHCb

nTOF

nTOF Goals and Implementation steps

- Goals
 - Nuclear Waste
 Transmutation
 - Medical Isotopes
 Production
 - Astrophysics
 - Nuclear Physics

nTOF Features

- High instantaneous neutron flux (10⁵ n/cm²/pulse)
- Unique facility for measurements of radioactive isotopes (maximize S/N)
- High resolution in energy ($\Delta E/E=10^{-4}$)
 - → study resonances
- Large energy range (25 meV<E_n<1 GeV)
 - → measure fission up to 1 GeV
- Low repetition rate (<0.8 Hz)
 - → no wrap-around

nTOF - Layout of Experimental Area 2 (EAR2)

nTOF

- EAR
 - Horizontal flight path:
 - EAR1 at 182.5 m
 - Vertical flight path:
 - EAR2 at 18.2 m

Both beam lines have:

- 1st collimator:
 halo cleaning + first beam shaping.
- Filter station.
- Sweeping magnet
- 2nd collimator: beam shaping.

Addressing the cosmological Lithium problem via ⁷Be(n,cp)

- ⁷Be decay
 - $n+^7Be \rightarrow a + a (\sim 2.5\%)$ nTOF result 2015
 - $n+^7Be \rightarrow p + ^7Li (\sim 97\%)$ nTOF result 2016
- possible because of
 - high n rate and
 - small sample masses

95% of primordial 7 Li from Electron Capture decay of 7 Be ($T_{1/2}=53.2$ d)

FLi problem persists

ISOLDE

see talk by Maria Borge

ISOLDE

- Decay spectroscopy (IDS, TAS,...)
- Coulomb excitation (MINIBALL)
- Transfer reactions (T-REX, Scattering)
- Electromagnetic Properties (COLLAPS, CRIS, NICOLE)
- Polarized Beta-NMR (VITO, COLLAPS)
- Masses (ISOLTRAP)
- Applications:
 - Solide state (Collections)
 - Life Science (collections & VITO)

HIE-ISOLDE (phase 1)

- 2 cryomodules
 - 5.5 MeV/u at
 - A/q = 4.5

HIE-ISOLDE (phase 2)

- 10 MeV/u
- 3 beamlines

HIE-ISOLDE programme

- Isospin symmetry
- Magic numbers far from stability
- Collectivity versus Single Particle
- Shape Coexistence
- Reaction for nucleosynthesis studies

COMPASS

COMPASS Programme

- legacy DIS
- Drell Yan processes
- polarized targets
 - Spin crisis

Sivers asymmetry for gluons from SIDIS data

NA61 / Shine

NA61 – Systematic exploration of QGP phase transition

Initial observation

 no indication of a critical point so far

exploration continues with more nuclei

NA61 / Shine

Measurement of cross sections for cosmic ray studies

 Measurement of target properties for neutrino physics

Beams of

- bb
- pA
- AA

Comprehensive experimental approach independent of theoretical assumptions

Superb performance of LHC in 2016 – also in p-Pb run

Configuration	Goal		Achieved	
5 TeV p-Pb	ALICE	700x10 ⁶ min bias events	780x10 ⁶	
8 TeV p-Pb	ATLAS - CMS	50 nb ⁻¹	69.5 - 65.5 nb ⁻¹	
	LHCb - ALICE	10 nb ⁻¹	14 - 13 nb ⁻¹	
	LHCf	9-12 h at 10 ²⁸ cm ⁻² s ⁻¹	9.5 h	
8 TeV Pb-p	ATLAS - CMS	50 nb ⁻¹	124 - 118 nb ⁻¹	
	ALICE - LHCb	10 nb ⁻¹	25 - 19 nb ⁻¹	

p-Pb lead collisions in LHCb

All 4 experiments contributing to Heavy Ion Programme

- Specific rapidity coverage
- ALICE specialising on low momentum particles and particle identification
- LHCb full coverage in forward direction
- ATLAS and CMS typically place harder momentum selection

ALICE at LHC – setup till Long Shutdown 2

Pb-Pb: J/ψ suppression at 5 TeV

 nuclear modification factor R_{AA}:

$$R_{AA} = \frac{N(J/\psi)_{AA}}{\langle N_{bin} \rangle N(J/\psi)_{pp}}$$

 very different behaviour between LHC and RHIC (vs both centrality and p_T)

New and precise 5 TeV data support even further increase

ALICE after Long Shutdown 2

ALICE

Systems

- Motivation: Focus on high-precision measurements of rare probes at low p_T
 - can not be selected with hardware trigger
 - need to record large sample of events
- Target: Pb-Pb recorded luminosity: ≥ 10 nb⁻¹
 - gain in statistics: factor 100 for selected probes!
 - plus pp and pA data

Strategy:

- read out all Pb-Pb interactions at a maximum rate of 50 kHz with a minimum-bias trigger or continuously (TPC)
- perform online data reduction

Detectors

ALICE ITS

Physics-Beyond-Colliders (PBC)

CERN Physics
Beyond
Colliders

- Workshop 6-7 Sep 2016
- Convened by
 - · C Vallee, J Jäckel, M Lamont
- with 342 registered participants

Will contribute to ESPP update

Particle Physics Programme on LHC injectors

NB: recent stop of major programs (e.g. CNGS) leaves room for new significant initiatives

Fixed Target Programme

- NA61
 - Charm deconfinement
 - support for v-programme
- COMPASS
 - Drell-Yan with anti-p and K-beams

Precision EDM Measurements using electrostatic ring

10⁻²⁹ e-cm sensitivity would correspond to 100 TeV for new physics energy scale. Pure electrostatic ring applicable to proton only

16

Energy Frontier

Future Circular Collider FCC

- European Design Study
- ~100 TeV pp in a ~100 km ring

Site investigations @ CERN

• Studies are a priori site independent. – FCC@CERN benefits from existing infrastructure.

Magnet R&D

- LHC: nominal 8.3 T; exercise 9 T (being studied)
- HL-LHC:
 - 11 T dipoles in dispersion suppression collimators
 - 12-13 T low-β quadrupoles ATLAS and CMS IR's

Dec 2015: 2 in 1 dipole of 1.8 m length reaches nominal 11.3 T.

Conceptual Design Report by end 2018

- · pp-Collider (FCC-hh) sets the boundary conditions
 - 100 km ring, √s=100 TeV, L~2x10³⁵
 - HE-LHC is included (~28 TeV)
- e⁺e⁻-Collider as a possible first step
 - \sqrt{s} = 90 350 GeV, L~1.3x10³⁴ at high E
- eh-Collider as an option
 - $\sqrt{s}=3.5$ TeV, L~ 10^{34}

FCC-hh Parameters

Parameter	FCC-hh		SppC	LHC	HL LHC
collision energy cms [TeV]	100		71.2	14	
dipole field [T]	16		20	8.3	
# IP	2 main + 2		2	2 main + 2	
bunch intensity [10 ¹¹]	1	1 (0.2)	2	1.1	2.2
bunch spacing [ns]	25	25 (5)	25	25	25
luminosity/lp [10 ³⁴ cm ⁻² s ⁻¹]	5	~25	12	1	5
events/bunch crossing	170	~850 (170)	400	27	135
stored energy/beam [GJ]	8.4		6.6	0.36	0.7
E-loss/turn synchrotron radiation/beam	5 MeV 3 MW		2 MeV 5.8 MW	7 keV 5.4 kW	7 keV 9.5 kW

FCC eh

- eh option included in FCC study
 - emerged from LHeC study

ERL option for LHeC

Goal of FCC study

- Design report by end of 2018
 - including cost
- Includes High-Energy LHC study
 - use of high field magnets in existing LHC ring
- Serves as input for Update of European Strategy of Particle Physics that is to conclude by May 2020

Conclusion

- Broad and rich Nuclear Physics Programme in place at CERN
- ALICE is the dedicated Heavy Ion Experiment at CERN
 - Upgrade during LS2 ready for 50 kHz operation with 10 nb⁻¹ goal
 - all four LHC experiments take part in Heavy Ion runs
- Further options explored for fixed target programme (PBC-study)
- eh-programme also examined for FCC-study