Hyperon Spectroscopy with **PANDA**

Sep 13, 2016 | Albrecht Gillitzer, IKP Forschungszentrum Jülich Young Scientist Convent, LVIII PANDA Meeting, Mainz, September 2016

Outline

- How to understand baryonic excitation spectra?
- What is the present status in baryon spectroscopy?
- What can we do with PANDA?
- What are the challenges and requirements?

Ground States of Light Baryons: SU(3)_F **Symmetry**

- Gell-Mann 1961: "The Eightfold Way", SU(3) symmetry
- Gell-Mann, Zweig 1964: 3 "quarks" as constituents

Need for Color

Baryon decuplet

$$\begin{split} \left| \Delta^{++} \right\rangle &= \left| u_{\uparrow} u_{\uparrow} u_{\uparrow} \right\rangle \quad \left| \Delta^{+} \right\rangle = \left| u_{\uparrow} u_{\uparrow} d_{\uparrow} \right\rangle \quad \left| \Delta^{0} \right\rangle = \left| u_{\uparrow} d_{\uparrow} d_{\uparrow} \right\rangle \quad \left| \Delta^{-} \right\rangle = \left| d_{\uparrow} d_{\uparrow} d_{\uparrow} \right\rangle \\ &\left| \Sigma^{*+} \right\rangle = \left| u_{\uparrow} u_{\uparrow} s_{\uparrow} \right\rangle \quad \left| \Sigma^{*0} \right\rangle = \left| u_{\uparrow} d_{\uparrow} s_{\uparrow} \right\rangle \quad \left| \Sigma^{*-} \right\rangle = \left| d_{\uparrow} d_{\uparrow} s_{\uparrow} \right\rangle \\ &\left| \Xi^{*0} \right\rangle = \left| u_{\uparrow} s_{\uparrow} s_{\uparrow} \right\rangle \quad \left| \Xi^{*-} \right\rangle = \left| d_{\uparrow} s_{\uparrow} s_{\uparrow} \right\rangle \\ &\left| \Omega^{-} \right\rangle = \left| s_{\uparrow} s_{\uparrow} s_{\uparrow} \right\rangle \end{split}$$

three identical fermions in Δ^{++} , Δ^{-} , Ω^{-} :

 \rightarrow problem with Pauli principle

H. Fritzsch, M. Gell-Mann, H. Leutwyler, Phys. Lett. B47 (1973) 365:

"Advantages of the Color Octet Gluon Picture"

 $\Psi = \phi_{\text{color}} \, \xi_{\text{space}} \, \zeta_{\text{flavor}} \, \chi_{\text{spin}}$

color charge of hadrons is zero: ϕ_{color} always antisymmetric

Albrecht Gillitzer

Combining Spin, Flavor & Orbital Angular Momentum

flavor only: $SU(3)_{F}$

 $\mathbf{3}\otimes\mathbf{3}\otimes\mathbf{3}=\mathbf{10}_{S}\oplus\mathbf{8}_{M}\oplus\mathbf{8}_{M}\oplus\mathbf{1}_{A}$

with *S*, *M*, *A* symmetric, mixed symmetry and antisymmetric in flavor (and spin) part under exchange of any 2 quarks

combine flavor & spin: $SU(6)_{f,s}$: 6 basic states: $d\uparrow$, $d\downarrow$, $u\uparrow$, $u\downarrow$, $s\uparrow$, $s\downarrow$

 $\mathbf{6}\otimes\mathbf{6}\otimes\mathbf{6}=\mathbf{56}_{S}\oplus\mathbf{70}_{M}\oplus\mathbf{70}_{M}\oplus\mathbf{20}_{A}$

decomposed as:

$$56 = {}^{4}10 \oplus {}^{2}8, \quad 70 = {}^{2}10 \oplus {}^{4}8 \oplus {}^{2}8 \oplus {}^{2}1, \quad 20 = {}^{2}8 \oplus {}^{4}1$$

superscript: (2S+1) spin multiplicity

Albrecht Gillitzer

SU(6) × *O*(3)

classification of baryons by $J^P \; \left(D, L^P_N \right) \; S$

- J^P: total baryon spin, parity
- D: SU(6) multiplet
- L: total quark orbital angular momentum
- N: # quanta of excitation
- S: total quark spin

note: baryons with same *J*^P can mix!

assignment partially uncertain

J^P	(D, L_N^P)	S	Octet n	nembers		Singlets
$1/2^{+}$	$(56,0^+_0)$	1/2 N(939)	A(1116)	$\Sigma(1193)$	$\Xi(1318)$	
$1/2^{+}$	$(56,0^+_2)$	1/2 N(1440)	A(1600)	$\Sigma(1660)$	$\Xi(?)$	
$1/2^{-}$	$(70,1^{-}_{1})$	1/2 N(1535)	A(1670)	$\Sigma(1620)$	$\Xi(?)$	A(1405)
$3/2^{-}$	$(70,1^{-}_{1})$	1/2 N(1520)	A(1690)	$\Sigma(1670)$	$\Xi(1820)$	A(1520)
$1/2^{-}$	$(70,1^{-}_{1})$	3/2 N(1650)	A(1800)	$\Sigma(1750)$	$\Xi(?)$	
$3/2^{-}$	$(70,1^{-}_{1})$	3/2 N(1700)	A(?)	$\Sigma(?)$	$\Xi(?)$	
$5/2^{-}$	$(70,1^{-}_{1})$	3/2 N(1675)	A(1830)	$\Sigma(1775)$	$\Xi(?)$	
$1/2^{+}$	$(70,0^+_2)$	1/2 N(1710)	A(1810)	$\Sigma(1880)$	$\Xi(?)$	$\Lambda(?)$
$3/2^{+}$	$(56,2^+_2)$	1/2 N(1720)	A(1890)	$\Sigma(?)$	$\Xi(?)$	
$5/2^{+}$	$(56,2^+_2)$	1/2 N(1680)	A(1820)	$\Sigma(1915)$	$\Xi(2030)$	
$7/2^{-}$	$(70,3^3)$	1/2 N(2190)	A(?)	$\Sigma(?)$	$\Xi(?)$	A(2100)
$9/2^{-}$	$(70,3^3)$	3/2 N(2250)	$\Lambda(?)$	$\Sigma(?)$	$\Xi(?)$	
$9/2^{+}$	$(56, 4^+_4)$	1/2 N(2220)	A(2350)	$\Sigma(?)$	$\Xi(?)$	

Decuplet members

$3/2^{+}$	$(56,0^+_0)$	3/2	$\Delta(1232)$	$\Sigma(1385)$	$\Xi(1530)$	$\Omega(1672)$
$3/2^{+}$	$(56,0^+_2)$	3/2	$\Delta(1600)$	$\Sigma(?)$	$\Xi(?)$	$\Omega(?)$
$1/2^{-}$	$(70,1_1^-)$	1/2	$\varDelta(1620)$	$\Sigma(?)$	$\Xi(?)$	$\Omega(?)$
$3/2^{-}$	$(70,1_1^-)$	1/2	$\Delta(1700)$	$\Sigma(?)$	$\Xi(?)$	$\Omega(?)$
$5/2^{+}$	$(56,2^+_2)$	3/2	$\Delta(1905)$	$\Sigma(?)$	$\Xi(?)$	$\Omega(?)$
$7/2^{+}$	$(56,2^+_2)$	3/2	$\Delta(1950)$	$\Sigma(2030)$	$\Xi(?)$	$\Omega(?)$
$11/2^+$	$(56, 4^+_4)$	3/2	$\varDelta(2420)$	$\Sigma(?)$	$\Xi(?)$	$\Omega(?)$

source: PDG 2008

Sep 13, 2016

Non-Relativistic Constituent Quark Model

(N.Isgur, G. Karl, PLB 72 (1977) 109)

Ansatz:

spin-independent + spin-dependent part:

 $H = H_{\rm si} + H_{\rm sd}$

$$H_{\rm si} = \sum_{i} \left(m_{i} + \frac{p_{i}^{2}}{2m_{i}} \right) + \sum_{i < j} \left(\frac{1}{2} br_{ij} + c - \frac{2\alpha_{s}}{3r_{ij}} \right)$$

split into harmonic part + anharmonic perturbation

$$H_{\rm si} = \sum_{i} \left(m_{i} + \frac{p_{i}^{2}}{2m_{i}} \right) + \sum_{i < j} \left(\frac{1}{2} k r_{ij}^{2} + U(r_{ij}) \right) \equiv H_{0} + \sum_{i < j} U(r_{ij}) \quad \text{with}$$
$$U(r_{ij}) = \frac{1}{2} b r_{ij} + c - \frac{2\alpha_{s}}{3r_{ij}} - \frac{1}{2} k r_{ij}^{2}$$

Non-Relativistic Constituent Quark Model

⇒ exactly solvable for H_0 , for simplicity S = 0 & S = -3: $m_1 = m_2 = m_3 \equiv m$ change of variables: ⇒

$$\vec{R} = \frac{m_1 \vec{r}_1 + m_2 \vec{r}_2 + m_3 \vec{r}_3}{m_1 + m_2 + m_3} \qquad \vec{\rho} = \frac{1}{\sqrt{2}} \left(\vec{r}_1 - \vec{r}_2 \right)$$

 $H_{0} = \frac{P^{2}}{2M} + \left(\frac{p_{\rho}^{2}}{2m} + \frac{3}{2}k\rho^{2}\right) + \left(\frac{p_{\lambda}^{2}}{2m} + \frac{3}{2}k\lambda^{2}\right)$

 $\Psi_{LM}^{\sigma} = \psi_{LM}^{\sigma} \frac{\alpha^3}{\pi^{3/2}} \exp\left(-\frac{1}{2}\alpha^2 \left(\rho^2 + \lambda^2\right)\right)$

 $\varepsilon_N = \left(N + \frac{3}{2}\right)\omega \qquad \omega \equiv \left(3k / m\right)^{1/2}$

correspondingly:

$$\vec{P}, \vec{p}_{\rho}, \vec{p}_{\lambda}$$

$$\vec{\lambda} = \frac{1}{\sqrt{6}} \left(\vec{r}_1 + \vec{r}_2 - 2\vec{r}_3 \right)$$

with $M = 3m \implies$

 \Rightarrow 2 degenerate oscillators

 σ denotes the symmetry w.r.t. exchange of two quarks

equidistant energy levels: remember: N = 2(n - 1) + l

Modern Quark Models

[,] U. Löring *et al.*, Eur. Phys. J. A10 (2001) 395

Dynamical Generation of Resonances

- example: Λ(1405)
- meson octet \otimes baryon octet in S = -1, Q = 0
- coupled channel analysis:
- $K^- p, \overline{K}^0 n, \pi^0 \Lambda, \pi^0 \Sigma^0, \pi^+ \Sigma^-, \pi^- \Sigma^+, \eta \Lambda, \eta \Sigma^0, K^0 \Xi^0, K^+ \Xi^-$

Lattice QCD

exhibits features of $SU(6) \times O(3)$ symmetry level count consistent with quark model

R.G. Edwards et al., Phys. Rev. D 84 (2011) 074508

Experimental Activities

- Early studies: π induced reactions: πN → πN, ππN, KΛ, KΣ, …
- Modern studies: Baryon
 Spectroscopy with in photoinduced reactions

Achievements in N* Spectroscopy

$N(1875)^{\frac{3}{2}^{-}}$ or $N(18)^{\frac{3}{2}^{-}}$	$(375)D_{13}$					
$N(1875)\frac{3}{2}^{-}$ pole parameters (MeV)						
$M_{\rm pole} = 1860 \pm 25$	Γ_{pole} 200±20					
Elastic pole residue 2.5 ± 1.0	Phase not defined					
$2\operatorname{Res}_{\pi N \to AK}/\Gamma$ $1.5 \pm 0.5\%$	Phase not defined					
$2\operatorname{Res}_{\pi N\to\Sigma K}/\Gamma$ $4\pm 2\%$	Phase not defined					
$2\operatorname{Res}_{\pi N \to N\sigma}/\Gamma \qquad 8\pm 3\%$	Phase $-(170\pm65)^{\circ}$					
$A^{1/2} (\text{GeV}^{-\frac{1}{2}}) = 0.018 \pm 0.008$	Phase $-(100\pm60)^{\circ}$					
$A^{3/2} (\text{GeV}^{-\frac{1}{2}}) = 0.010 \pm 0.004$	Phase $(180\pm30)^{\circ}$					
$N(1875)\frac{3}{2}^{-}$ Breit-Wigner para	meters (MeV)					
$M_{\rm BW}$ 1880±20	$\Gamma_{\rm BW}$ 200±25					
$Br(N\pi) \qquad 3\pm 2\%$	$\operatorname{Br}(N\eta) \qquad 5\pm 2\%$					
$Br(\Lambda K) = 4\pm 2\%$	$\operatorname{Br}(\Sigma K)$ 15±8%					
$Br(N\sigma) \qquad \qquad 60\pm 12\%$	· ·					
$A_{BW}^{1/2} \; (\mathrm{GeV}^{-\frac{1}{2}}) \; \; 0.018 \pm 0.010$	$A_{BW}^{3/2} (\text{GeV}^{-\frac{1}{2}}) - 0.009 \pm 0.005$					

I	411	πN	γN	$N\eta \ AK \ \Sigma K$	$\Delta \pi$	$N\sigma$
$N(1875)\frac{\tilde{3}}{2}^{-}$ *	**	*	***	* * * **		* * *

BnGa PWA: A.V. Anisovich *et al.*, EPJA 48 (2012) 15

N*	$J^{P}\left(L_{2I,2J}\right)$	2010	2014
N(1440)	$1/2^+ (P_{11})$	* * **	* * **
N(1520)	$3/2^{-}(D_{12})$	* * **	* * **
N(1535)	$1/2^{-}(S_{11})$	* * **	* * **
N(1650)	$1/2^{-}(S_{11})$	* * **	* * **
N(1675)	$5/2^{-}(D_{15})$	* * **	* * **
N(1680)	$5/2^+ (F_{15})$	* * **	* * **
N(1685)	/ (15/		*
N(1700)	$3/2^{-}(D_{13})$	* * *	* * *
N(1710)	$1/2^+ (P_{11})$	* * *	* * *
N(1720)	$3/2^+(P_{13})$	* * **	* * **
N(1860)	5/2+		**
N (1875)	3/2-		* * *
N (1880)	1/2+		**
N (1895)	1/2-		**
N (1900)	$3/2^{+}(P_{13})$	**	* * *
N (1990)	$7/2^+(F_{17})$	**	**
N(2000)	$5/2^{+}(F_{15})$	**	**
-N(2080)	D ₁₃	**	
- N(2090)	S ₁₁	*	
N(2040)	3/2+		*
N(2060)	5/2-		**
<i>N</i> (2100)	$1/2^+ (P_{11})$	*	*
<i>N</i> (2120)	3/2-		**
N(2190)	7/2 ⁻ (G ₁₇)	* * **	* * **
-N(2200)	D ₁₅	**	
N(2220)	$9/2^{+}(H_{19})$	* * **	* * **

Open Questions

- Missing resonances
- Wrong masses, wrong sequence
- Relevant degrees of freedom?
 - 3-quark?
 - quark-diquark?
 - meson-baryon dynamics

from RPP 2014 / QM: S. Capstick, W. Roberts

Strange Partners

- Approximate SU(3) flavor symmetry
- N* & Δ states have partners in the strange sector
- focus on Ξ and Ω
 - Ξ : as many states as N* & Δ together ⁽¹⁾
 - Ω: as many states as Δ
- scrutinize our understanding of the baryon excitation pattern

Status of **Ξ*** Resonances: RPP 2014 Chin. Phys. C 38 (2014) 090001

Table 1. The status of the Ξ resonances. Only those with an overall status of *** or **** are included in the Baryon Summary Table.

				Status as seen in —					
	Particle	J^P	Overall status	$\Xi\pi$	ΛK	ΣK	$\Xi(1530)\pi$	Other cl	nannels
	$\Xi(1318)$	1/2+?	****					Decays	weakly
	$\Xi(1530)$	3/2 +	****	****					
	$\Xi(1620)$		*	*					
	$\Xi(1690)$		***		***	**			
•	$\Xi(1820)$	3/2-?	***	**	***	**	**		
	$\Xi(1950)$		***	**	**		*		
	$\Xi(2030)$		***		**	***			
	$\Xi(2120)$		*		*				
	$\Xi(2250)$		**					3-body	decays
	$\Xi(2370)$		**					3-body	decays
	$\Xi(2500)$		*		*	*		3-body	decays

**** Existence is certain, and properties are at least fairly well explored.

- *** Existence ranges from very likely to certain, but further confirmation is desirable and/or quantum numbers, branching fractions, *etc.* are not well determined.
- ** Evidence of existence is only fair.
- * Evidence of existence is poor.

Ξ(1820):

Teodoro78 favors J = 3/2, but cannot make a parity discrimination. Biagi 87c is consistent with J = 3/2 and favors negative parity for this *J* value.

Dand**a** SU(6) x O(3) Classification

RPP 2014: Chin. Phys. C 38 (2014) 090001

"Assignments for ... $\Xi(1820)$ and $\Xi(2030)$, are merely educated guesses."

Ξ(1690), Ξ(1950): ? T. Melde *et al.*, PRD 77 (2008) 114002

decuplet: no Ξ^* , no Ω^*

"... nothing of significance on Ξ resonances has been added since our 1988 edition."

$\overline{J^P}$	$(D, L_N^P) S 0$	ctet members	Singlets
$1/2^{+}$	$(56,0^+_0) \ 1/2 N(939) \ \Lambda(1)$	116) $\Sigma(1193)$ $\Xi(1318)$)
$1/2^{+}$	$(56,0^+_2) \ 1/2 N(1440) \Lambda(160)$	500) $\Sigma(1660)$ $\Xi(1690)$)†
$1/2^{-}$	$(70,1_1^-) \ 1/2 N(1535) \Lambda(160)$	570) $\Sigma(1620)$ $\Xi(?)$	$\Lambda(1405)$
		$\Sigma(1560)^{\dagger}$	
$3/2^{-}$	$(70,1_1^-) \ 1/2 N(1520) \Lambda(160)$	590) $\Sigma(1670)$ $\Xi(1820)$) $\Lambda(1520)$
$1/2^{-}$	$(70,1_1^-) \ 3/2 N(1650) \Lambda(18)$	800) $\Sigma(1750)$ $\Xi(?)$	
		$\Sigma(1620)^{\dagger}$	
$3/2^{-}$	$(70,1_1^-) \ 3/2 N(1700) \Lambda(?)$	$\Sigma(1940)^{\dagger} \Xi(?)$	
$5/2^{-}$	$(70,1^{-}_{1}) \ 3/2 N(1675) \Lambda(18)$	830) $\Sigma(1775)$ $\Xi(1950)$)†
$1/2^{+}$	$(70,0^+_2) \ 1/2 N(1710) \Lambda(12)$	810) $\Sigma(1880)$ $\Xi(?)$	$\Lambda(1810)^{\dagger}$
$3/2^{+}$	$(56,2^+_2) \ 1/2 N(1720) \Lambda(120)$	890) $\Sigma(?)$ $\Xi(?)$	
$5/2^{+}$	$(56,2^+_2) \ 1/2 N(1680) \Lambda(180)$	820) $\Sigma(1915)$ $\Xi(2030)$)
$7/2^{-}$	$(70,3_3^-) \ 1/2 N(2190) \Lambda(?)$	$\Sigma(?)$ $\Xi(?)$	$\Lambda(2100)$
$9/2^{-}$	$(70,3_3^-) \ 3/2 N(2250) \Lambda(?)$	$\Sigma(?)$ $\Xi(?)$	
$9/2^{+}$	$(56,4_4^+) \ 1/2 N(2220) \Lambda(2220)$	$350) \Sigma(?) \qquad \qquad \Xi(?)$	

Decuplet members

$3/2^{+}$	$(56,0^+_0)$	3/2	$\Delta(1232) \Sigma(1385)$	$\Xi(1530)$	$\Omega(1672)$
$3/2^{+}$	$(56,0^+_2)$	3/2	$\Delta(1600) \Sigma(1690)$	Ξ(?)	$\Omega(?)$
$1/2^{-}$	$(70,1^{-}_{1})$	1/2	$\Delta(1620) \Sigma(1750)$	Ξ(?)	$\Omega(?)$
$3/2^{-}$	$(70,1^{-}_{1})$	1/2	$\Delta(1700) \Sigma(?)$	$\Xi(?)$	$\Omega(?)$
$5/2^{+}$	$(56,2^+_2)$	3/2	$\Delta(1905) \Sigma(?)$	$\Xi(?)$	$\Omega(?)$
$7/2^{+}$	$(56,2^+_2)$	3/2	$\Delta(1950) \Sigma(2030)$	$\Xi(?)$	$\Omega(?)$
$11/2^+$	$(56,4^+_4)$	3/2	$\Delta(2420) \Sigma(?)$	$\Xi(?)$	$\Omega(?)$

Quark Model for $\Xi \& \Omega$

Ξ:

- many states predicted below 3 GeV
- compare 1/2⁺ and 1/2⁻ excitation

Ω:

- several states predicted between 2 GeV and 3 GeV
- compare 3/2⁺ and 3/2⁻ excitation

U. Löring et al., EPJA 10 (2001) 447

s.a.: M. Pervin, W. Roberts, PRC 77 (2008) 025202

Data on Ξ^* States: $\Xi(1530)$

- $\Xi(1530)$ decuplet g.s. $J^P = 3/2^+$
- Γ = 9...10 MeV Compare to Δ!!
- decay: ~100% Ξπ
- BaBar measured the $\Xi(1530)^0$ spin J = 3/2 in $\Lambda_c^+ \rightarrow \Xi^- \pi^+ K^+$
- favor $J^P = 1/2^-$ for $\Xi(1690)$

BaBar: B. Aubert et al., PRD 78 (2008) 034008

A Little Bit of PANDA History

Original Focus: Charmonium States, Hybrids and Glueballs see "FAIR" CDR, Nov 2001, PANDA TPR, Feb 2005

- Charmonium
- Gluonic Excitations
- Charm in Nuclei
- Hypernuclei and -atoms
- Further options (open charm, nucleon structure and form factors, CP violation)

Composition of the $\overline{p}p$ cross section

 $\sigma_{non-ann} / \sigma_{ann}$: ~ 0.1 (p = 1.5 GeV/c), ~ 1 (p = 5 GeV/c), ~3 (p = 15 GeV/c)

Sep 13, 2016

Albrecht Gillitzer

PANDA is a Factory for (Excited) Hyperons !

hyperon-antihyperon cross sections:

- $\sigma(\bar{p}p \to \bar{\Lambda}\Lambda, \bar{\Lambda}\Sigma, \bar{\Sigma}\Sigma) \cong 10 \dots 100 \,\mu b$ measured
- $\sigma(\bar{p}p \rightarrow \bar{\Xi}\Xi) \cong 2 \,\mu b$ measured
- $\sigma(\bar{p}p \to \overline{\Omega}\Omega) \cong 2 \dots 100 \text{ nb}$ predicted
- > production rates at full luminosity $2 \cdot 10^{32} \text{ s}^{-1} \text{ cm}^{-2}$:
- up to $1.7 \cdot 10^9 \Lambda$ per day, $\sim (1 5) \cdot 10^8 \Sigma$ per day (charge state dep.)
- up to $3.5 \cdot 10^7 \equiv \text{per day}$
- maybe $5.10^5 \Omega$ per day (using $\sigma = 30$ nb)
- at comparative energy above threshold, we expect the same order of magnitude for excited states

Baryon Spectroscopy at PANDA

Albrecht Gillitzer, Institut für Kernphysik, Forschungszentrum Jülich

- 1. Why to study baryon excitations in $\overline{p}p$ collisions?
- 2. Relevant reaction channels
- 3. First simulation results
- 4. Implications for the PANDA design

Most Promising: Study E Resonances

- very little known $\leftarrow \rightarrow$ rather high cross section
- find missing resonances
- determine branching to various decay modes: $\Xi \pi, \Xi \pi^+ \pi^-, \Xi \pi^0 \pi^0, \Lambda K^-, \Sigma \overline{K}, \Xi \eta, \Xi \eta \pi, \Xi \eta', \Xi \omega, \Xi \phi, ...$
- determine J^P quantum numbers if possible

- André Zambanini, completed, PhD thesis U Bochum 2015
- 4.1 GeV/c $\overline{p}p \rightarrow \Xi(1690)^{-}\overline{\Xi}^{+} \rightarrow K^{-}\Lambda\overline{\Xi}^{+}$
- $\sim 0.5 \cdot 10^6$ signal events, $\sim 50 \cdot 10^6$ DPM background events
- Jennifer Pütz, PhD thesis fully devoted to Ξ spectroscopy
- 4.6 GeV/c $\overline{p}p \rightarrow \Xi(1820)^{-}\overline{\Xi}^{+} \rightarrow K^{-}\Lambda\overline{\Xi}^{+}$ & c.c.
- 1.5.10⁶ signal events, 15.10⁶ DPM background events so far

 $\overline{\Xi}^+ \Lambda K^-$ final state: $M^2(\Lambda K^-)$ vs. $M^2(\overline{\Xi}^+ \Lambda)$

Reconstructed (bef. 4C kin. fit)

Simulation input

André Zambanini, Dissertation Univ. Bochum (2015)

$\overline{p}p \rightarrow \overline{\Xi}^{+}\Xi(1820)^{-} \rightarrow \overline{\Xi}^{+}\Lambda K^{-}$

$\overline{\Xi}^+ \Lambda K^-$ final state: $M^2(\overline{\Xi}^+ K^-)$ vs $M^2(\Lambda K^-)$

Generated

 $\sigma_{M}(\overline{\Xi}^{+}) = 4.0 \text{ MeV}$ f_{rec} = 2.1% (updated)

background suppression under study

Reconstructed

Jenny Pütz, Talk at FAIRNESS 2016

Early Physics: Expected Rates for Strange Baryons

- initial phase: $L \cong 10^{31} \text{ cm}^{-2} \text{s}^{-1}$ instead of $L \cong 2 \cdot 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
- nevertheless the $\Xi \overline{\Xi}$ production rate will be $R_{\Xi \overline{\Xi}} \cong 10/s \cong 10^6/d$
- for $\Omega\overline{\Omega}$ production we expect $R_{\Omega\overline{\Omega}} \cong 0.3/s \cong 3 \cdot 10^4/d$
- for excited states the cross section should be of the same order of magnitude as for the ground state for given $\sqrt{s} \sqrt{s_{thr}}$
- the *detected* rate depends on the specific decay mode (branching & reconstruction efficiency)
- e.g. $\bar{p}p \rightarrow \bar{\Xi}^+ \Xi^{*-} \rightarrow \bar{\Xi}^+ \Xi^- \pi^0 \rightarrow \bar{\Lambda}\pi^+ \Lambda \pi^- \pi^0 \rightarrow \bar{p}\pi^+ \pi^+ p \pi^- \pi^- \pi^0$ assume $b = 0.5 \cdot 0.64^2 = 0.2$ and $\epsilon = 5\% \rightarrow R_{det} \cong 10^4/d$

Ξ^* / Ω^* Studies within the PANDA Physics Program

- good case for initial phase with lower L
- Λ & Σ spectroscopy can be done in parallel
- Iong runs to measure the X(3872) width in energy scan planned:
- parallel trigger for Ξ* and Ω*
- p ≈ 7.0 GeV/c
- $M_{max}(\Xi^*) \approx 2.55 \text{ GeV}$ $(M_{max}(\Omega^*) \approx 2.20 \text{ GeV})$
- Iater: long runs for threshold scan of D[±]_sD_s(2317)[∓]
- p ≈ 8.8 GeV/c
- $M_{max}(\Omega^*) \approx 2.61 \text{ GeV}$

Ξ^* Production at p = 7.0 GeV/c (it will not look like this)

- EvtGen
- $\bar{p}p \to \bar{\Xi}^+ \Xi^{*-} \to \bar{\Xi}^+ \Lambda K^-$
- included all Ξ^* states in PDG above $\Lambda \overline{K}$ threshold
- typical width ~20 MeV
- decay: PHSP
- added Ξ⁺ΛK⁻ cont., Λ^{*} & Σ^{*} states ⁽¹⁾, K(3100) ⁽²⁾

Challenges & Requirements

- Complex decay topology
 - Number of charged particles in final state
 - Displaced vertices
 - Charged → charged + neutral
- need
 - Realistic pattern recognition for displaced tracks
 - ✓ Vertex fitter for charged + neutral
 - ✓ Decay tree fitter
 - Realistic tracking for FTS
- Forward Boost ← → PANDA Start Setup !

Κ

[][—]*

 $\overline{\Xi}^+$

р

р

Implications for the PANDA design

- $\overline{p}p \rightarrow \overline{Y}Y^* \rightarrow \overline{p}p$ + mesons: final state particles more forward than typically in annihilation reactions
- large fraction of particles emitted into region between FS and STT large fraction of Λ decay behind MVD
 ⇒ improvement with additional tracking detectors (MVD disks, GEM)
- pions have low transverse momentum (< 250 MeV/c)</p>

the second second

- \Rightarrow dE/dx measurement in MVD and STT
- \Rightarrow v / ToF measurement inside TS
- relevant decay channels with K[±]
 - \Rightarrow K/ π separation in all regions of phase space
- importance of Dalitz plot analysis
 - \Rightarrow avoid acceptance holes and discontinuities as much as possible

still valid!

- Much more detailed studies required
- Implications for PANDA design already visible

Large fraction of p cross section with baryon-antibaryon in final state

- Opportunity for PANDA to study interesting physics
- Deserves more attention !

