

PANDA LVIII. Collaboration Meeting – Mainz 12-16 September 2016

Status Report for the PANDA GEM-Tracker Simulation

Nazila Divani,

Radoslaw Karabowicz, Takehiko R. Saito, Bernd Voss

Helmholtz Institute Mainz (HIM)

Helmholtzzentrum für Schwerionenforschung GmbH (GSI)

University of Birjand

N.DIVANI - GSI & HIM

- Comparison between track reconstruction using PndSttMvdGemTracking class and PndBarrelTrackFinding class
- Momentum resolution and track finding efficiency
- To check and compare the PANDA GEM-tracker acceptance using full geometry with one or three stations
- Invariant mass reconstruction for the antip $+ p \rightarrow A0 + antiA0$ as a important hyperonic channel

N.DIVANI - GSI & HIM

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

Small Summary from the previous presentations and its'Results

Part One : As Reminder

N.DIVANI - GSI & HIM

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

Details Reminding about the PANDA GEM-tracker Geometry on the Simulation

gem_3Stations_realistic_v1.root gem_3Stations_realistic_v1.digi.par

N.DIVANI - GSI & HIM

 $\mathbf{\Delta}$

GSI Helmholtzzentrum für Schwerionenforschung GmbH

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

Reminding Studies results about the GEM influence to improve track reconstruction

PndSttMvdGemTracking

- Current tracking class in the framework is PndSttMvdGemTracking
 - Tracking procedure always uses hits in STT and MVD
 - GEM hits are used for track improving when they exist - Contributions with STT+MVD & GEM
 - coincidence is not large

PndBarrelTrackFinder

- Another tracking class in the framework is PndBarrelTrackFinder
- Tracking procedure always uses any hits in STT and MVD and GEM
- GEM hits are counted for track finding simultaneously
- Contributions with STT+MVD & GEM coincidence is good
- The <u>PndBarrelTrackFinder</u> gives better results than the <u>PndSttMvdGemTracking</u> in the Psi channel since there are low momentum pions going in the forward directions using GEM with 3 stations.

Helmholtz-Institut Mainz

GSI Helmholtzzentrum für Schwerionenforschung GmbH

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

Reminding about the Investigation of Track Finding Efficiency & Momentum Resolution

- Although momentum resolution doesn't improve too much by using <u>PndBarrelTrackFinder</u> class, it could be useful to reconstruct tracks in forward directions (GEM region).
- How about the quality of track finding by using <u>PndBarrelTrackFinder</u> track reconstruction class and influence of GEM to improve momentum resolution?
- By mentioning to these points : To need to continue our study in all of aspects !

N.DIVANI - GSI & HIM

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

Status Report for the PANDA GEM-Tracker Simulation

Part Two : Single Particle Study

N.DIVANI - GSI & HIM

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

- We need to understand the behavior of these two classes at different momenta and angles.

 In this study, the simulation condition: No. of Events=10000, SimEngine =TGeant4, Event generator=BoxGenerator, Particles=Pions (211), Phi range=0 to 360 [degree],

Theta range =2, 4, 8, ..., 22, 25, 30, ..., 45 [degree] Particles Momentum= 0.1, 0.2, 0.5, 1, 2, 5 [GeV/c] (We need to study about low momentum pions for hyperon channel)

- For each theta and Momentum we did the simulation separately in several cases: without and with GEM (full geometry(3stations) – its' covering polar angle= 2° to 20°) using <u>PndSttMvdGemTracking</u> & <u>PndBarrelTrackFinder</u>
- Macros in used for each theta and momentum: Gem_simBox.C
 Gem_digBox.C
 Gem_recBox.C
 Gem_recoqaBox.C
 Gem_recBox_bar.C
 Gem_recoqaBox bar.C
- Using Revision: 29377 of PandaRoot

nholtzzentrum für Schwerionenforschung GmbH

N.DIVANI - GSI & HIM

8

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

Quality of Track Finding Efficiency Study with and without GEM In Comparison between using two Track Reconstruction Classes : PndSttMvdGemTracking & PndBarrelTrackFinder

- Quality of Track Finding Efficiency is not good for low momentum tracks

N.DIVANI - GSI & HIM

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

Track Finding Efficiency versus Theta for Pion = 0.5 & 1 GeV/c

Quality of Track Finding Efficiency is getting higher by increasing the momentum of particles
 The performance of the GEM is coming to appear clearly

N.DIVANI - GSI & HIM

10

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

Track Finding Efficiency versus Theta for Pion = 2 & 5 GeV/c

The performance of the GEM is good to improve the quality of Track Finding Efficiency
 There is big changes for the GEM and in case of using PndBarrelTrackFinder

N.DIVANI - GSI & HIM

GSI Helmholtzzentrum für Schwerionenforschung GmbH

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

N.DIVANI – GSI & HIM

GSI Helmholtzzentrum für Schwerionenforschung GmbH

G S II

- Momentum Resolution is not good for low momentum tracks

N.DIVANI - GSI & HIM

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

Momentum Resolution versus Theta for Pion = 0.5 & 1 GeV/c

- Momentum Resolution is getting better by increasing the momentum of particles

- Momentum Resolution is not good below 10°
- The performance of the GEM is coming to appear clearly

N.DIVANI - GSI & HIM

GSI Helmholtzzentrum für Schwerionenforschung GmbH

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

Momentum Resolution versus Theta for Pion = 2 & 5 GeV/c

 The performance of the GEM is good to improve the momentum resolution by PndBarrelTrackFinder

- There is impressive changes for the GEM and in case of using PndBarrelTrackFinder

N.DIVANI - GSI & HIM

GSI Helmholtzzentrum für Schwerionenforschung GmbH

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016 N.DIVANI – GSI & HIM

GSI

SSI Helmholtzzentrum für Schwerionenforschung GmbH

- The behavior of the PndSttMvdGemTracking & PndBarrelTrackFinding is more understandable at different momenta and angles now
- Using PndBarrelTrackFinding class is more beneficial to see the influence of the GEM tracker to improve quality of track finding efficiency and momentum resolution in the GEM region below 22°

N.DIVANI - GSI & HIM

GSI Helmholtzzentrum für Schwerionenforschung GmbH

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

Investigation of Track Finding Efficiency without, with 3 stations & single station GEM

Track Finding Efficiency versus Theta for Pion = 0.1 & 0.2 GeV/c

- Bad track finding efficiency for low momentum tracks - No any differences with GEM and without GEM

N.DIVANI - GSI & HIM

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

Track Finding Efficiency versus Theta for Pion = 0.5 & 1 GeV/c

Good track finding efficiency by increasing the momentum of particles
The performance of the GEM with 3stations is coming to appear clearly

N.DIVANI - GSI & HIM

19

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

Track Finding Efficiency versus Theta for Pion = 2 & 5 GeV/c

- The performance of the GEM with 3stations is good to improve track finding efficiency - There is impressive shifts for the GEM with 3 stations geometry in comparison with the other cases

N.DIVANI - GSI & HIM

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

CSI Helmholtzzentrum für Schwerionenforschung GmbH

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

N.DIVANI – GSI & HIM

Momentum Resolution is not good for low momentum tracks
At least, GEM with 3 stations geometry is better than the others

N.DIVANI - GSI & HIM

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

Momentum Resolution versus Theta for Pion = 0.5 & 1 GeV/c

- Momentum Resolution is not good for small angles - The performance of the GEM with 3 stations geometry is coming to appear clearly

N.DIVANI - GSI & HIM

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

Momentum Resolution versus Theta for Pion = 2 & 5 GeV/c

- Momentum resolution is almost the same in case of GEM with single station and without GEM

N.DIVANI - GSI & HIM

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

GSI Helmholtzzentrum für Schwerionenforschung GmbH

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

N.DIVANI – GSI & HIM

Helmholtz-Institut Mainz

 GEM tracker with 3 stations can improve momentum resolution and track finding efficiency better than the others

N.DIVANI - GSI & HIM

26

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

Status Report for the PANDA GEM-Tracker Simulation

Part Three : Lambda-Lambda Bar Mass Reconstruction Study

N.DIVANI - GSI & HIM

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

Investigation of Lambda – Anti Lambda Invariant Mass Reconstruction

Benchmark channel including : antip + p $\rightarrow \Lambda 0$ + anti $\Lambda 0 <$

→ Anti
$$\Lambda 0 \rightarrow p$$
- & π+

 $\Lambda 0 \rightarrow p + \& \pi -$

The exact mass value of the $\Lambda 0$ and anti $\Lambda 0$: 1115.683±0.006MeV/c²

- In this study, the simulation condition:
- No. of Events=10000, SimEngine =TGeant4, Event generator=EvtGen,
- Momentum= 5 [GeV/c]

GSI Helmholtzzentrum für Schwerionenforschung GmbH

- without and with GEM (full geometry and single station geometry)
- Using PndBarrelTrackFinder class
- Using Revision: 29377 of PandaRoot

HIM Helmholtz-Institut Mainz

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

Lambda0 Invariant Mass Reconstruction with and without GEM

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

oltz-Institut Mainz

AntiLambda0 Invariant Mass Reconstruction with and without GEM

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Investigation of Lambda0 Invariant Mass Reconstruction in Comparison without, with Three Stations & Single Station GEM

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

GSI Helmholtzzentrum für Schwerionenforschung GmbH

G 5] (

Investigation of AntiLambda0 Invariant Mass Reconstruction in Comparison without, with Three Stations & Single Station GEM

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

GSI Helmholtzzentrum für Schwerionenforschung GmbH

G 5] (

Important Point

N.DIVANI - GSI & HIM

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

- Invariant mass reconstruction for Lambda0-antiLambda0 has been implemented.
- we can clearly see the positive influence of the GEM to improve track finding efficiency and momentum resolution in the forward directions (using PndBarrelTrackFinder).
- It seems to improve PANDA experiment mass resolution, using only GEM with one single station is not sufficient.
- With 1 station GEM geometry, mass resolution and tracking acceptance:
 - are almost similar to those without GEM.
 - are worse than those with 3 stations GEM.

Many Thanks For Your Attention

N.DIVANI - GSI & HIM

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

Status Report for the PANDA GEM-Tracker Simulation

Part Four : Investigation of the Radiation Length

N.DIVANI - GSI & HIM

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

In physics, the radiation length is a characteristic of a material, related to the energy loss of high energy particles. The characteristic amount of matter traversed for the related interactions is called the radiation length X0,

$$X_0 = rac{716.4 \cdot A}{Z(Z+1) \ln rac{287}{\sqrt{Z}}} \; \mathrm{g} \cdot \mathrm{cm}^{-2} = rac{1432.8 \cdot A}{Z(Z+1)(11.319 - \ln Z)} \; \mathrm{g} \cdot \mathrm{cm}^{-2}$$

The impact of the introduced material can be quantitatively described by a resulting fractional radiation length, X/X0, which adds up in all traversed volumes j:

$$X/X_0 = \sum_j \frac{\rho_j \cdot L_j}{X_{0_j}}$$

where X0j and ρ_j are the specific radiation length and the density of the material defined for the volume j, respectively, and Lj corresponds to the traversed path length therein.

In this study, the simulation condition :

- For the extraction of the GEM material map, muon particles were propagated through the detector.
- Also, virtual particles ("geantinos") were propagated through the detector . The fictitious "geantino" particle undergoes no physical interactions but flags boundary crossings along its straight trajectory.
- Five million events were simulated starting from the origin with an isotropic emission over the polar angle, θ, and the azimuthal angle φ.
- Simulation Engine =TGeant4, Event generator=BoxGen, Theta Range(0.0001, 45), Phi Range(0., 360.), Momentum Range (0.05, 10.0), Beam Momentum= 15 [GeV/c]
- with full geometry of GEM detector

GSI Helmholtzzentrum für Schwerionenforschung GmbH

N.DIVANI - GSI & HIM

36

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

GEM Materials On the Simulation	Carbon Density=2.265 g/cm3	Copper Density=8.96 g/cm3	Aluminum Density=2.7 g/cm3	Kapton Density=1.42 g/cm3	Glass Fiber Density=2.77 g/cm3
Station 1	2.440568 kg	31.9322189 kg	5.43217268 kg	0.21899042 kg	7.0290712 kg
Station 2	3.610685 kg	66.7585211 kg	5.81343111 kg	0.36925732 kg	9.5082353 kg
Station 3	5.537874 kg	68.0850433 kg	6.46993688 kg	0.690296 kg	13.6113037 kg
And totally :	Gem_Disk1_Volume has 81.4294 kg Gem_Disk2_Volume has 86.1164 kg Gem_Disk3_Volume has 94.4239 kg GEM_Riddle_Volume has 18.6689 kg GEM_Copperbar_Volume for cables has 28.52864 kg Gem_Disks has 308.968 kg				

N.DIVANI - GSI & HIM

HIM Helmholtz-Institut Mainz

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

GSI Helmholtzzentrum für Schwerionenforschung GmbH

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

Helmholtz-Institut Mainz

GSI Helmholtzzentrum für Schwerionenforschung GmbH

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

Helmholtz-Institut Mainz

For Muon particles Polar distribution of fractional radiation length, X/X0, for GEM holding structures layers Polar distribution of fractional radiation length, X/X0, for GEM main layers materials materials hthe-0 px hthe-rest px Seg Gemrest Entries 5000000 Entries 5000000 0X/X 0X/X Mean 0.2952 Mean 0.201 RMS 0.1141 RMS 0.1166 10^{-2} 10 10-3 10 10 10-4 10 0.2 0.2 0.6 0.4 0.6 0.4 0 0.8 0.8 [rad] [rad]

Stacked Radiation lengths θ

Stacked Radiation lengths ϕ

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

GSI Helmholtzzentrum für Schwerionenforschung GmbH

G 5 1

Material thicknesses

Radiaion length (θ)

0.2

0.4

0.6

thetaprof

Entries 5000000

..........

[rad]

Mean

RMS

0.8

RMS y

0.3927

0.1519

0.2267

0.7831

Effective Radiation length values per volume

Radiaion length (\$) Nean 0.001375 Mean 0.001375 Mean 0.01375 Mean 0.001375 Mean 0.01375 Mean 0.0137 test stacked histograms

Radiation length map 0 & 0

For Muon particles

G S I

x/x

10

10

 10^{-}

0

N.DIVANI - GSI & HIM

41

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Stacked Radiation lengths θ

Stacked Radiation lengths ϕ

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

GSI Helmholtzzentrum für Schwerionenforschung GmbH

-

(1) 3Stations GEM, MC Points, xy view

r[cm] 60 40 104 20 -20 10^{2} -40 -60 -80 120 160 180 200 140 z[cm]

(5) Effective Radiation length values per volume

(2) 3Stations GEM. MC Points, rz view

(3) test stacked histograms

(6) test stacked histograms

(9) Radiation length map $\,\theta$ & φ

HIM Helmholtz-Institut Mainz

N.DIVANI - GSI & HIM

2

3

Phi[rad]

-1

10

-3

-2

Status Report for the PANDA GEM-Tracker Simulation

Part Five : More Results & Extra Information

N.DIVANI - GSI & HIM

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

Helmholtz-Institut Mainz

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Momentum Resolution Study with and without GEM In Comparison between using two Track Reconstruction Classes : PndSttMvdGemTracking & PndBarrelTrackFinder Belative Transverse Momentum Resolution Relative Transverse Momentum Resolution

counts GEM SttMvdGem fPtRelHisto fPtRelHisto Entries 1423 Entries 927 GEM BarreITF 0.09966 Mean -0.05512 Mean noGEM SttMvdGemT RMS 0.325 RMS 0.4794 noGEM BarrelTF fPtRelHisto fPtRelHisto 1323 Entries 90 Entries Mean -0.004192 Mean 0.09726 0.4806 RMS 0.3395 RMS theta=14 degree ⁵mom= 0.2 [GeV/c] $(p_t^{RECO} - p_t^{MC}) / p_t^{MC}$ -0.8 -0.6 -0.4 -0.20 0.2 0.4

Relative Transverse Momentum Resolution

N.DIVANI - GSI & HIM

46

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

GSI Helmholtzzentrum für Schwerionenforschung GmbH

G 5 1

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

GSI Helmholtzzentrum für Schwerionenforschung GmbH

GSI Helmholtzzentrum für Schwerionenforschung GmbH

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

oltz-Institut Mainz

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

oltz-Institut Mainz

GSI Helmholtzzentrum für Schwerionenforschung GmbH

GSI Helmholtzzentrum für Schwerionenforschung GmbH

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

Helmholtz-Institut Mainz

Theta=2 to 45 degree ,

m=0.1GeV/c, theta=8[d]

Relative Transverse Momentum Resolution

N.DIVANI - GSI & HIM

51

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

GSI Helmholtzzentrum für Schwerionenforschung GmbH

GSI

Theta=2 to 45 degree , pion momentum = 0.2 [GeV/c]

52

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

GSI Helmholtzzentrum für Schwerionenforschung GmbH

G S I

Relative Transverse Momentum Resolutio

Theta=2 to 45 degree , pion momentum = 0.5 [GeV/c]

Relative Transverse Momentum Resolution

Relative Transverse Momentum Resolution

om=0.5 GeV/c , theta= 8[d]

nom=0.5 GeV/c , theta= 16[d]

53

(D RECO

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

GSI Helmholtzzentrum für Schwerionenforschung GmbH

G S I

Theta=2 to 45 degree , pion momentum = 5 [GeV/c]

N.DIVANI - GSI & HIM

20

160

140 12

Relative Transverse Momentum Resolution

54

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

GSI Helmholtzzentrum für Schwerionenforschung GmbH

G S I

Backup Slide : Investigation of Track Finding Efficiency without, with 3 stations & 1 station GEM using PndSttMvdGemTracking class

Backup Slide : Investigation of Momentum Resolution without, with 3 stations & 1 station GEM using PndSttMvdGemTracking class

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Helmholtz-Institut Mainz

Backup Slide : Investigation of Momentum Resolution without, with 3 stations & 1 station GEM using PndSttMvdGemTracking class

Theta=2 to 45 degree , pion momentum = 5 [GeV/c]

350

300

250

20

150

10

Relative Transverse Momentum Resolution

m=5GeV/c theta=40fd

Relative Transverse Momentum Resolutio

Relative Transverse Momentum Resolution

nom=5GeV/c . theta=8fd

mom=5GeV/c , theta=16[d]

35

300

250

200 15 10

N.DIVANI - GSI & HIM

57

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

GSI Helmholtzzentrum für Schwerionenforschung GmbH

G S I

Investigation of Lambda – Anti Lambda Invariant Mass Reconstruction with and without GEM

58

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

GSI Helmholtzzentrum für Schwerionenforschung GmbH

GSI

Investigation of Lambda – Anti Lambda Invariant Mass Reconstruction with and without GEM

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Backup Slide : Investigation Lambda-AntiLambda Mass Reconstruction without, and with GEM using PndSttMvdGemTracking class

60

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

GSI Helmholtzzentrum für Schwerionenforschung GmbH

500 5

400

300

200

100

1.06 1.08

10C

500

400

30

200

100

1.06

G S I

1.08

Backup Slide: Investigation of Lambda – Anti Lambda Invariant Mass Reconstruction in Comparison without, with Three Stations & Single Station GEM using PndSttMvdGemTracking class

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

GSI Helmholtzzentrum für Schwerionenforschung GmbH

G 5 1

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

1.26

antiLambda0 Mass[GeV/c2]

VtxFit

1.22

GEM

Last S GEM

First S GEM

no GEM

8799

1.156

7873

1.159

8440

1.161

8439

1.161

0.09918

1.28

0.1278

0.07391

0.04927

Entries

Entries

Mean

Entries

Mean

RMS

Entries

Mean

RMS

1.24

antiLambsa0 Mass[GeV/c2]

RMS

Mean

RMS

AntiLambda Invariant Mass Plot

antiLambda0 Mass[GeV/c2]

GEM

Last S GEM

First S GEM

no GEM

8799

28.29

21.74

7873

32.27

27.51

8440

32.6

8439

31.81

28.45

29

Entries

Mean

RMS

Entries

Mean

RMS

Entries

Entries

Theta[degree]

Mean

RMS

120

100

Mean

RMS

AntiLambda Theta Distribution Plot

80

60

N.DIVANI - GSI & HIM

300

250

200

150

100

50

0₀

20

40

GSI Helmholtzzentrum für Schwerionenforschung GmbH

1.08

1.1

1.12

1.14

1.16

1.18

1.2

counts 00600

800

700

600

500

400

300

200

100

G 5 1

9.06

62

3GEMStations-MC Points, rz view [E] 80 [C] 60 105 40 104 20 103 0 -20 10² -40 10 -60 -80200 180 100 120 140 160 z[cm]

Effective Radiation length values per volume

x[cm],y[cm]

-2

phiprof 500000 .001378 X/X 0.1519 1 MS 1.814 0.7831 AMS 1 10^{-1}

0.2

x/x0

2

3

[rad]

N.DIVANI - GSI & HIM

A

test stacked histograms

Radiation length map 0 & 0

63

For Muon particles

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Backup Slide: Investigation of Radiation Length for the Materials of the GEM Detector and Pipe

GSI Helmholtzzentrum für Schwerionenforschung GmbH

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

Helmholtz-Institut Mainz

Backup Slide: Investigation of Radiation Length for the Materials of the GEM Detector and Pipe

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

GSI Helmholtzzentrum für Schwerionenforschung GmbH

65

Helmholtz-Institut Mainz

For Muon particles

-

N.DIVANI - GSI & HIM

66

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Backup Slide: Investigation of Radiation Length for the Materials of the GEM Detector and Pipe

test stacked histograms

Material thicknesses

Effective Radiation length values per volume test stacked histograms

500000

0.001514

RMS

RMS

2

0.5849

1.814

2.26

3

[rad]

Radiation length map 0 & 0

For Muon particles

GSI Helmholtzzentrum für Schwerionenforschung GmbH

PANDA LVIII. Collaboration Meeting, Mainz, 12-16 September 2016