

E Spectroscopy and the PANDA ,Start Setup'

Sep 13, 2016 | Albrecht Gillitzer, IKP Forschungszentrum Jülich

LVIII PANDA Meeting, Mainz, September 2016

Current Version of the PANDA, Start Setup'

Day-1 master macros distributed by Stefano July 25 as basis for the physics simulation and analysis studies:

- Cluster Jet Target
- No GEM planes
- No Disc DIRC
- FTS planes 1 2 3 4 (no 5 6)

No RICH

- \rightarrow need MVD or STT_{stereo} for p_z
- \rightarrow no K/ π separation
- \rightarrow poor p resolution

How does this affect Hyperon Spectroscopy & Hyperon Spin Physics?

Need Studies at Different Levels

1. MC event generation, e.g. EvtGen: p_T vs. p_L , θ vs. p_L

2. PandaRoot simulation, count # hits in each sub-detector

3. PandaRoot simulation and full event reconstruction

Complication: displaced decay vertices of hyperons ! (affects 1. & 3.)

Fast Geometric Analysis with Straight Tracks

- EvtGen events
- 4.1 GeV $\bar{p}p \rightarrow \bar{\Xi}^+ \Lambda K^-$
- $\bar{p}\pi^+\pi^+p\pi^-K^-$ final state
- simplified geometry of MVD, STT, GEM, FTS
- neglect magnetic field (conservative)
- evaluate path length in each sub-detector volume & R(z_{STT}) -----

Detector Geometry

Detector ⁽¹⁾	Z _{us}	Z _{ds}	R _i	R _o
MVD	-170	230	10	135
STT	-550	1100	150	420
STT _{stereo}	-550	1100	239	331
GEM #1	1194	-	45	450
GEM #3	-	1885	45	740
FwdEndCap(x) ⁽²⁾	2450	2450	-	[432] ⁽²⁾
FwdEndCap(y) ⁽²⁾	2450	2450	-	[214] ⁽²⁾
FTS	2954	7475	-	-

⁽¹⁾ all values in mm

 $^{(2)}$ elliptical opening, θ_x = $\pm 10^{o}, \, \theta_y$ = $\pm 5^{o}$

Scan of 100 Events in Event Display

- display primary particles only
- display MVD, STT, GEM, FTS points only
- minimum requirement: all 6 tracks visible on ,global' scale
- how "straight" are the tracks?
- what is the event topology?
 - 1 : both $p \& \overline{p}$ in FTS
 - \sim 2 : one of p, \overline{p} in FTS
 - **3** : both p & \overline{p} in GEM
 - 4 : one of π , K in FTS
 - **5** : both p & \overline{p} vertex ,beyond' MVD
 - **6** : one of p, p vertex ,beyond' MVD

any of these disfavors recostruction with MVD & STT only

Interim Conclusion based on Event Display

- large number of secondary particles
- about 1/2 of events is lost due to scattering, absorption or decay
- straight track approximation is good for p, p and fair for K⁻
- most pion tracks (but not all) strongly deviate from straight lines
- reconstruction with MVD and STT alone seems to be difficult for all scanned events

Fast Geometric Analysis with Straight Tracks

• 4.1 GeV $\bar{p}p \rightarrow \bar{\Xi}^+ \Lambda K^-$ • $\bar{p}\pi^+\pi^+p\pi^-K^-$ final state evaluate fractional path p length in each subdetector volume: $f_L = L/L_{max}$ $\Delta f_{I} = f_{I} (MVD) + f_{L}(STT)$ $f_{I}(GEM) - f_{I}(FTS)$ compare radial distance of hit on xy plane at end π of STT with outer radius of stereo layers π` September 13, 2016

Fractional Path Length in Sub-Detectors

- test model with prompt particles
- K⁻ is the only prompt particle
- plot fractional path length vs. θ

Fractional Path Length Difference (MVD+STT) – (GEM+FTS)

 $\Delta f_{L} = f_{L}(MVD) + f_{L}(STT) - f_{L}(GEM) - f_{L}(FTS); f_{L} = L/L_{max}$

Acceptance ($\Delta F_L > 0$)

Radial Distribution at STT End Plane

Acceptance (R > R_{crit})

 \rightarrow almost zero efficiency if p_z information from STT is required !

More Realistic: Combine MVD & STT for p_z

- need both p_z and p_T information from central detector
- a track starting downstream of MVD must pass the STT stereo layer
- a track starting inside MVD must at least pass the last two MVD discs and two axial STT double-layers
- $L_{MVD} \cdot \cos\theta > 70 \text{ mm}$ $L_{STT} \cdot \sin\theta > 40 \text{ mm}$

Acceptance $(R > R_{crit}) || ((L_{MVD} > L_{c1}) \&\& (L_{STT} > L_{c2}))$

Effect on 2-Body Masses ($\Delta F_L > 0$)

September 13, 2016

Albrecht Gillitzer

Effect on 2-Body Masses $(R > R_{crit}) \parallel ((L_{MVD} > L_{c1}) \&\& (L_{STT} > L_{c2}))$

September 13, 2016

Albrecht Gillitzer

Angular Distribution in Gottfried-Jackson Frame

Effect on Angular Distribution (GJ Frame)

Albrecht Gillitzer

Conclusion

- This analysis is applicable for *all* reactions at *all* momenta.
- One obtains a qualitative but *quasi-immediate* answer on the effect of missing GEM and incomplete FTS.
- For the reaction 4.1 GeV/c $\bar{p}p \rightarrow \bar{\Xi}^+ \Lambda K^-$, relevant for the study of $\Xi(1690)$ it demonstrates the importance of GEM & FTS; using the "Start Setup" for this reaction will result in a dramatic loss of efficiency.
- My personal conclusion: not a proof but strong evidence that GEM & FTS are mandatory for strange baryon spectroscopy; at least one of the two must be complete.

$\overline{\mathbf{p}} \mathbf{p} \mathbf{C}$ orrelations

