

Study of Excited Cascade Baryons (Update)

PANDA – Collaboration Meeting Mainz, September 13th 2016 | Jenny Pütz

Outline

- Simulation
- Reconstruction: Final State Particles
- Comparison ideal PR & realistic PR
- Reconstruction: Composite States
- Comparison different PID selections
- Summary and Outlook

Simulation

- 1.5 million signal events
- $\overline{p}p \rightarrow \Xi(1820) \overline{\Xi}$ and c.c.
- Mass of Ξ(1820): m_{Ξ(1820)} = 1.823 GeV/c²
- Width: Γ = 24 MeV
- Spin & Parity: 3/2-
- p_p = 4.6 GeV/c (approx. 100 MeV above production threshold)
- PandaRoot: trunk rev. 29165 (former rev. 28958)

Reconstruction Strategy

Reconstruction Final State Particles

- Used ideal PR and ideal particle identification (PID)
- Selected only final state particles with N_{Hits} ≥ 4 in any inner tracking detector (MVD, STT, GEM)
- Reconstruction efficiency for final state particles:

Comparison ideal PR & realistic PR

10,000 eventspp \rightarrow p p $\pi^+ \pi^- \text{ K}^+ \text{ K}^-$ Angle & momentum

 $\begin{array}{l} \underline{\pi}^{+} \& \pi^{-}: \theta = [0..60]^{\circ} \ p = [0.1..0.7] \ GeV/c \\ p \& p : \theta = [0..50]^{\circ} \ p = [0.2..2.0] \ GeV/c \\ K^{-} \& K^{+}: \theta = [0..30]^{\circ} \ p = [0.3..2.7] \ GeV/c \end{array}$

Reconstruction of $\Lambda \& \overline{\Lambda}$

- Mass: M_{A,PDG} = 1.116 GeV/c²
- Selection: Mass window (± 0.15 GeV/c²), vertex fit, mass fit
- Fitted mass: M_{A,fit} = 1.1155 GeV/c²

Reconstruction of $\Lambda \& \overline{\Lambda}$

- Mass: M_{⊼,PDG} = 1.116 GeV/c²
- Selection: Mass window (± 0.15 GeV/c²), vertex fit, mass fit
- Fitted mass: M_{⊼,fit} = 1.1155 GeV/c²

position	Ve	Vertex resolution		
	Ξ	Ξ (c.c. channel)		
x/mm	0.36	0.36		
y/mm	0.36	0.36		
z/mm	1.28	1.24		

Mitglied der Helmholtz-Gemeinschaft

13. September 2016

8

10

LICH

Reconstruction of Ξ(1820) Vertex resolution

 Vertex resolution evaluated with FWHM

_∃-(1820

position	Vertex resolution	
	Ξ(1820)	Ξ(1820) (c.c. channel)
x/mm	0.31	0.30
y/mm	0.30	0.29
z/mm	0.86	0.88

LICH

Reconstruction of $\Xi(1820) \overline{\Xi}$

- Combine $\Xi(1820)$ and $\overline{\Xi}$
- Perform four momentum constraint fit
- Select candidates with p>0.01

Reconstruction Efficiencies

Reco efficiency $\overline{p}p \rightarrow \Xi^* \overline{\Xi}$		Reco efficiency $\overline{p}p \rightarrow \Xi \overline{\Xi}^*$	
Particle	Reco eff. in %	particle	Reco eff. in %
Λ^0	32.9	Λ^0	26.8
$\overline{\Lambda}{}^{0}$	25.2	$\overline{\Lambda}{}^{o}$	31.2
Ξ	13.0	Ξ	13.7
Ξ(1820)	27.6	<u></u> ≡(1820)	27.8
Ξ(1820) Ξ sys	2.1	Ξ Ξ(1820) sys	2.2

Comparison Ideal & Realistic PID

Efficiency [%]

Summary & Outlook

- ✓ Simulated 1.5 million signal events for $\overline{pp} \rightarrow \Xi(1820) \overline{\Xi} + c.c$
- Used selection criteria discussed
- ✓ Mass of Ξ (1820) (reco eff. approx 27%) can be well reconstructed
- Reconstruction efficiency for full reaction chain 2.1% (2.2% for c.c.)
- $\hfill\square$ Switch to realistic PID \rightarrow work in progress
- Background simulation \rightarrow work in progress
- Cut optimization
- Partial wave analysis of $\Lambda_0 \text{ K}$ $\overline{\Xi}$ (& c.c) final state will be explored

Backup

13. September 2016

Vertex Resolution $\overline{\Xi}$

Vertex Resolution $\Xi(1820)$

Mass after diff cuts: **Ξ(1820) and Ξ(1820)**

Comparison Ideal & Realistic PID

Simulation and PID Selection

Simulation:

10,000 events for $\overline{p}p \rightarrow \overline{\Xi}^+ \Xi(1820)^-$ @4.6 GeV/c PHSP

PID Array names:

PidAlgoMvd – Based on MVD info PidAlgoStt - Based on STT info PidAlgoDrc - Based on Barrel DIRC info PidAlgoDisc - Based on Disc DIRC info PidAlgoEmcBayes - Based on EMC info

PID selection tightness

Ideal:	P= -	1, for correct species
		0, for all others
all:	P≥	0
loose:	P>	0.25
tight:	P>	0.50
verytight:	P>	0.90
best: 13. September 2016	P=	maximal for species