Forward Endcap

Thomas Held

Ruhr-Universität Bochum Institut für Experimentalphysik I

LVIII. PANDA Collaboration Meeting, Mainz September 13th, 2016

Topics

- Glueonic Excitations:
 - Usage of primer
 - Roughen of surface
 - Vacuumizing
 - Capusle design
 - 1:2 problem
 - Comparison of barrel and forward endcap glueing
- APD preamps
- APD screening results

- Observation: Many broken photodetector-crystal couplings
- Couplings brake after (many) cold-warm cycles
- ⇒ Review of glueing technique
- Use of special primer fluids by the glue manufacturer
 - Primer PR-1200 RTV
 - Primer 1200 OS (not recommended, transparency compromized)
 - Primers improve adhesion of moisture reactive silicons to non-porous substrates

- Test setup: Capsules with plastic APD dummies and lever arm
- Necessary force/torque to break coupling?
- Setup used for w/ vs w/o primer and w/ vs. w/o vacuumizing comparison

Improvement of coupling by use of primer:
 Three times the torque necessary to break the coupling!

Dow Corning 3145 primer stress test 1=without primer : 2=PR-1200 : 3=1200-OS temperature cycles -25°C to +25°C: 3* with 0.04°C/min 4* with 0.14°C/min B2: capsule broken B3: screw thread broken 4.5 4 min. 3.5 max 3 Torque / Nm 2.5 2 1.5 0.5 A1 В1 A2 B2 Gluing

- Applied as indicated in data sheet (prevent overdose!): no visual difference
- Test pieces (glass plates glued together) prepared and given to Giessen for
 - Quantitative comparison of couplings w/ and w/o primer(s)
 - Check for radiation hardness of primer supported coupling
 - Use of primer on APDs as well?
 Weak link has always been crystal coupling...

- However, glass plates used not radiation hard (getting brown)
- Preparation of new test glueings using radiation hard glasses (GI)
- There is one PR-1200 RTV involved APD-crystal currently running temperature cycles in BO:
 - 3 full warm and cold cycles up to now
 - Still properly coupled (stable APD response ratio of 1...)
 - Non primer-coupled APDs lasted 2 full warm/cold cycles maximum

Glueing: Roughen of surface

- Adhesion of couplings improved by roughen of involved surfaces (data sheet)
- However, any trial of sanding (1200, 240, 80 grit) or scratching the PbWO₄ surfaces obviously deteriorates light coupling
- (We got a lot of PbWO₄ test pieces from Giessen...)

Glueing: Vacuumizing

- Vacuumizing the glue given to the photo detectors in order to prevent buildup of air spots during curing
- Does vacuumizing harm the buildup of a strong coupling?
 - Barrel colleagues do not use this technique
 - They apply force on coupling during curing
 - They state to have no problems with bad glueings (however, 1:2 ratio observations!)
- Some discussion with Dow Corning chemists
 - See no reason why not vacuumizing the adhesive
 - Maybe additional time it takes results in skin on cured glue however, pot life 20-60 min (moisture curing!)
 - Anyway, data sheets repeat several times: test for your specific case!
- ⇒ Explicit comparison of couplings on PbWO₄
 w/ and w/o the vacuumizing step

Glueing: Vacuumizing

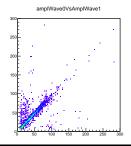
- 5 test couplings:3 glued w/o vacuumizing, 2 w/ vacuumizing (no primer)
- Temperature cycling for one week

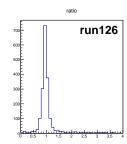
Sample	Torque to break coupling
not vacuumized 1	3.731 Nm
not vacuumized 2	0
not vacuumized 3	1.441 Nm
vacuumized 1	1.440 Nm
vacuumized 2	1.213 Nm

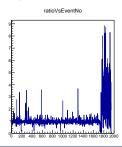
- No conclusion drawn:
 - ⇒ repetition of measurement w/ primer (Claudius)

Glueing: Capsule Design

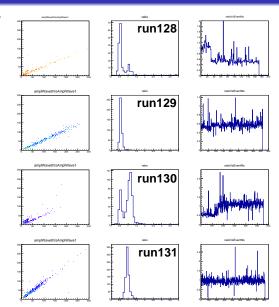
- Forward endcap subunit design: photo detector-crystal coupling part of mechanical structure
- Alveole fix coupled with inserts (glued)
- Crystals may 'float' to some extend inside alveole (sitting on table vs. suspension in forward endcap)
- No mechanical stress on couplings: photo detector-preamp unit must not strike inserts!
- Play designed and measured to be sufficient

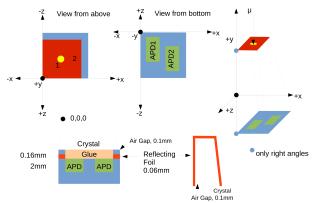

Glueing: Capsule Design


- Capsule development at some point compromized this design
- Maybe stress applied to the coupling via capsule? (To be checked)
- Redesign of capsules? (Omit it w/ VPTTs?)
 - Some of latest APDs (X5) do not properly fit to (some of) the capsules anyway (+0.2 mm, within tolerances)
 - APD surfaces often not in parallel to each other and crystal end face (separate glueing of each APD to crystal first?)
 - Integration of stimulated recovery LEDs...

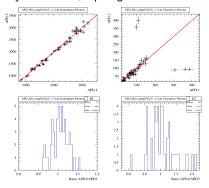


- 1:2 problem of differently responding APD readout on the same crystal
 - Obviously caused by photo detector-crystal coupling
 - It seems that one (two) APD(s) (fully?) decouple during cooling down, resulting in response ratio about 1:2
 - Not fully understood what is going on
 - Why decouple APDs either totally (or at least always to the same amount) or not at all? ⇒ Either ratio 1:2 or 1:1

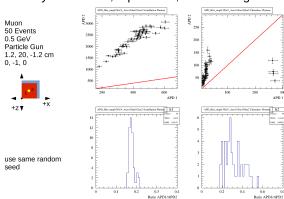

- Typical scenario of APD ratio measurement with properly glued 2-APD-preamp unit
- HV channels adjusted to APD gain of 200 each
- Response APD 1 ("red") vs. response APD 2 ("blue"): bisecting line, ratio 1:1
- Response ratio histogram: peak around 1
- Time evolution of ratio (event number): constant around 1
- (Event numbers > 1700: Oscillating preamp)



- Started properly coupled, warm, ratio 1:1
- Run 128: cooling down
- Run 129: kept cold, ratio 1:2
- Run 130: warming up
- Run 131: kept warm, ratio 1:1 (usually 1:2)
- "Sudden" jumps while cooling (warming)


- MC simulation of forward endcap crystals (T. Schröder)
- Based on barrel crystal simulation by S. Diehl
 - Crystals wrapped in reflective foil
 - 2-APD readout
 - Glue layer between APDs and crystal

- Different scenarios simulated: myons, electrons, energies and incident (point, angle) varied...
- Cherenkov light considered (4...5 %)
- No differences in APD responses observable!

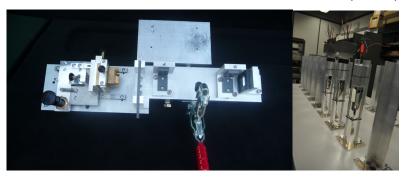


Myon 0.5 GeV, top edge

- Adding an air gap between crystal and glue for one APD:
 - Loss of response of 'air plus glue' coupled APD!
 - However, response ratio higher than seen: 1:5 rather than 1:2
 - Do the APDs decouple only partially?

Myon 0.5 GeV, top central, APD1: air+glue

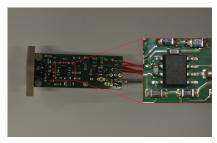
Thomas Held (RUB EPI)


Forward Endcap

Glueing: Comparsion of Barrel and Forward Endcap Strategies

- Barrel people report to not have any 'glueing issues'
 - No problems with failing couplings
 - However, substancial amount of 1:2 ratio observations:
 4 out of 18 crystals
 - There is a 'rotary tool' to remove glued APDs!
- Fundamental differences to FE:
 - Photo detector-crystal coupling no integral part of mechanical structure - ASICs separately mechanically suspended, flexible cable in between
 - No vacuumizing step in glueing procedure
 - Instead: Pressing APDs against crystal during curing
- GI: No intention to additionally use primer fluids to improve adhesion

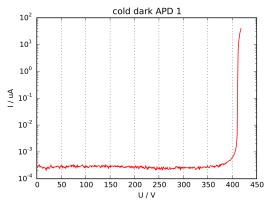
Glueing: Comparsion of Barrel and Forward Endcap Strategies


- Curing Times: GI: 3 h (pressed) vs. BO: 1 week (no pressure)
- Bochum glueing gauge: weights for pressed glueing (testing)

• Climate conditions in laboratories? (moisture)

APD Preamps

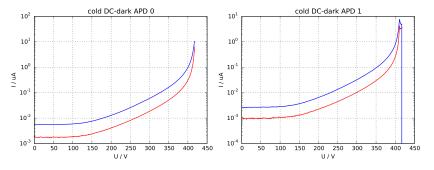
- Final APD preamp version tested and accepted
- No susceptibility to ringing/oscillation anymore
- Nice, low (pickup) noise output signals
- Bonn cosmics test unit equipped with such preamps now
 - Currently under construction (glueing)
 - Results of cosmics measurement: confirmation of necessary APD preamp gain



APD Screening for Bonn Tests

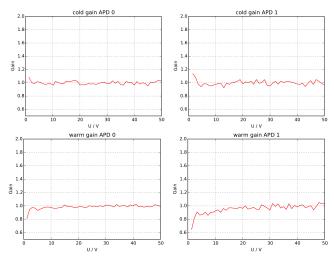
- Bonn cosmics measurement setup:
 - Subunit equipped w/ two APD crystals (4 APDs)
 - What preamp output signal results from vertically crossing muons in upright standing crystals?
 - Another method of determining the optimum preamp gain to properly cover full energy range
- Measurement somewhat delayed as old preamps heavily oscillated (and APD-crystal couplings failed)
- The four corresponding APDs have been fully screened:
 - Dark current
 - Light current(s), intensities
 - Warm, cold measurements
 - AC, DC signals
 - All light signals referred to reference
- All measurements done using ISEG HVs (Problems: Talk T. Triffterer)

APD screening: Dark Current at Breakdown?

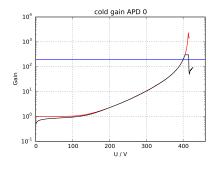

- Breakdown voltage definition: $U_{break} = U(I_{dark} = 100 \ \mu A)$
- Steep rise in dark current even at lower bias voltages, close to operation point (M=200)

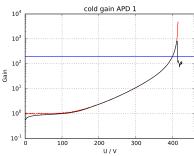
• However, no influences on operation at gain 200 seen yet

APD screening results: DC saturation?

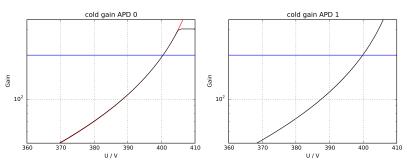

- Gain curves bend at 'high' DC light intensities and 'high' bias voltages (i.e. 'high' DC currents)
- Non-linearities caused by saturation effects?

 ⇒ Considered 'red' low-DC intensity curve for AC/DC comparison


APD screening results: DC normalization


• Gain 1-normalization: fit to curve between 30 V and 50 V

APD screening: AC vs. DC


- AC and DC gain at -25 °C
- Normalization: $M_{AC}^{200} := M_{DC}^{200}$
- Nicely overlapping curves except for the low voltage end (APD-, coupling-, preamp input-Cs charge/voltage diviation)
- Result of 'low intensity' DC screening?

APD screening AC vs. DC

Zoomed into operation bias voltage region:

- To do:
 - Check gain curves at different AC intensities
 - Check responses of APDs to the same AC signal $(M_{AC}^{200} := M_{DC}^{200} \text{ fine?})$

Summary

- Glueing:
 - We need to refine the glueing procedure (chemically, mechanically) before start of mass production
 - Primer does improve adhesion
 - Enough for our needs?
 - Is transparency compromized?
 - Is primer prepared coupling radiation hard?
 - Capsule redesign (stress on coupling, space for APDs, LEDs)?
 - There are very strong hints from experiment and simulation that the "1:2 problem" is a coupling problem
- Long-lasting preamp ringing problem finally solved!
- APD screening
 - Do the AC-DC screening discrepancies come from saturating DC screening intensities?
 - Need to check with different AC intensities and constant intensities on different APDs