Status of the SttCellTrackFinder

Walter Ikegami Andersson

 $\label{eq:constraint} \begin{array}{c} \text{Uppsala University} \\ \text{on behalf of the $\overline{\mathsf{P}}$ANDA collaboration} \end{array}$

PANDA collaboration meeting September 12-16, 2016 GSI

SttCellTrackFinder

Track reconstruction algorithm using only STT. (J. Schumann, Forschungszentrum Jülich)

- Cluster hits in parallel straws into tracklets (Cellular Automaton)
- Refined circle fit using isochrones

Output: circle for each track in *xy*-plane

Must include skewed straws to reconstruct p_z

Longitudinal position from skewed straws

Longitudinal position from skewed straws

Longitudinal position from skewed straws

The method:

- Extract isochrone radius in skewed straw
- Center of isochrone gives z-position
- Generate all possible isochrone positions
- Calculate (z, ϕ)

Ambiguity: Each straw gives two possible (z, ϕ)

Solve ambiguity

Use Hough transform or combinatoric method to reject fake positions

PzFinder - Code structure

- PndSttSkewStrawPzFinderTask.cxx
 - PndTrack Standard PANDA track object
 - PndTrackCand PndSttHits belonging to track
 - PndRiemannTrack Riemann circle parameters to track
- PndSttSkewStrawPzFinder.cxx
 - MoveSkewedHitstoCircle
 - Calculates all possible (z, ϕ) in skewed straw
 - HoughTruelsoFinder
 - Fills accumulator space, find maximum, rejects fake hits with POCA
 - LineCombilsoFinder
 - Generates lines, calculates angles, find best path
 - PzLineFitExtract
 - Simple line fit to true (z,ϕ) hits and extracts helix angle
- PndSttSkewStrawPzFinderAnaTask.cxx
 - Task for analysing and drawing output

Reconstruction macro

```
PndSttCellTrackFinderTask *TrackFinder = new PndSttCellTrackFinderTask():
TrackFinder->SetPersistence(kTRUE):
TrackFinder->SetAnalyseSteps(kTRUE);
TrackFinder->SetVerbose(0):
fRun->AddTask(TrackFinder);
PndSttSkewStrawPzFinderTask *PzFinder = new PndSttSkewStrawPzFinderTask():
PzFinder->StoreData(kTRUE):
fRun->AddTask(PzFinder):
PndSttSkewStrawPzFinderAnalysisTask *PzAna = new
     PndSttSkewStrawPzFinderAnalysisTask();
fRun->AddTask(PzAna);
PndMCTrackAssociator* trackMC = new PndMCTrackAssociator():
trackMC->SetTrackInBranchName("FinalTrack"):
trackMC->SetTrackOutBranchName("SttMvdGemTrackID");
trackMC->SetPersistence(kFALSE);
fRun->AddTask(trackMC):
PndRecoKalmanTask* recoKalman = new PndRecoKalmanTask();
recoKalman ->SetTrackInBranchName("FinalTrack"):
recoKalman->SetTrackInIDBranchName("SttMvdGemTrackID");
recoKalman->SetTrackOutBranchName("SttMvdGemGenTrack");
recoKalman->SetBusyCut(50); // CHECK to be tuned
recoKalman->SetTrackRep(0); // O Geane (default), 1 RK
recoKalman->SetPropagateToIP(kFALSE);
fRun->AddTask(recoKalman):
```

$z-\phi$ Fit dependence on Circle Fit

The $z-\phi$ fit depends on the circle parameters produced by the SttCellTrackFinder:

• Alignment of isochrones in skewed straws to extract (z, ϕ)

Benchmarking SttCellTrackFinder

• Clusterisation How well does the Cellular automaton bunch together STT hits?

• Circle fit

How good is the transversal momentum resolution?

*All simulations done with full PANDA setup

Tracking Quality Assurance

Tested channels:

- $\overline{\Lambda}\Lambda \rightarrow p\pi^-\overline{p}\pi^+$ @ 1.64 GeV/c
- $\overline{\Lambda}\Lambda \rightarrow p\pi^-\overline{p}\pi^+$ @ 4.0 GeV/c
- $\overline{\Omega}\Omega \rightarrow K^- p \pi^- K^+ \overline{p} \pi^+$ PHSP @ 12.0 GeV/c
- Box generator: π^- , p = 0.5 GeV
- Box generator: p, p = 0.5 GeV
- Box generator: π^- , p = 2 GeV

<u>Tools used:</u> Ideal TrackFinder:

Modified TrackingQA:

	PndTrackingQualityTaskNewLinks* trackingQA	=			
	<pre>new PndTrackingQualityTaskNewLinks("</pre>				
ľ	<pre>FinalTrack", "IdealTrack");</pre>				
	fRun->AddTask(trackingQA);				

Tracking Quality Assurance

Track definitions:

- Fully found All MC hits found, All hits of candidate from one track
- $\bullet\,$ Partly found $\,>70\%$ of MC hits found, All hits of candidate from one track
- Spurious found > 70% of candidate hits from one MC track
- Ghost
 - <70% of candidate hits from one MC track
- Clone

Number of MC tracks found more than once

SttCellTrackFinder Efficiencies

Reconstructible: 3 hits from any detector

	$\Lambda\overline{\Lambda}$ @ 1.64 GeV/c	$\Lambda\overline{\Lambda}$ @ 4.0 GeV/c	$\Omega\overline{\Omega}$ @ 12.0 GeV/c
MC tracks	50381	41158	72561
Reconstructible	47111	34377	69786
Fully found	637	514	647
Partly found	30995	12353	35617
Spurious	1200	592	4220
Ghosts	2909	2649	9334
Clones	27024	31291	37758
\sum found	32832	13459	40484
\sum found %	69.7	39.2	58.0

- + Low number of spurious tracks
- Large number of clones

SttCellTrackFinder Efficiencies - $\Lambda\overline{\Lambda}$ @ 1.64 GeV/c

Polar Angle Efficiency

SttCellTrackFinder Efficiencies - $\Lambda\overline{\Lambda}$ @ 4.0 GeV/c

Polar Angle Efficiency

SttCellTrackFinder Efficiencies - $\Omega\overline{\Omega}$, PHSP @ 12.0 GeV/c

Polar Angle Efficiency

SttCellTrackFinder - Untreated hits

- Hits from the MVD/GEM are not currently treated
- Including MVD hits improves accuracy of initial track parameters

Summary and outlook

- Running version of PzFinder on PandaRoot
 - PndTask for running PzFinder, instantiated in usual reconstruction macro
 - Class with algorithmic part
 - PndTask for analysis of output
- Treat the clone tracks
 - Compatibility analysis
 - Track merging
- Extend SttCellTrackFinder clusterization to MVD/GEM hits
 - Improve transversal momentum resolution
 - Improve start track parameters
 - Additional information for $z \phi$ fit.

Summary and outlook

- Running version of PzFinder on PandaRoot
 - PndTask for running PzFinder, instantiated in usual reconstruction macro
 - Class with algorithmic part
 - PndTask for analysis of output
- Treat the clone tracks
 - Compatibility analysis
 - Track merging
- Extend SttCellTrackFinder clusterization to MVD/GEM hits
 - Improve transversal momentum resolution
 - Improve start track parameters
 - Additional information for $z \phi$ fit.

Thank you for your attention!

The PANDA Straw Tube Tracker

STT specifications				
Total straws	4636			
Axial layers	15-19			
Stereo layers	8			
Stereo angle	\pm 2.9 deg			

Isochrone radius

Radial distance from track to wire

Figure: Cross sectional view of STT Green - parallel straw Red, blue - skewed straw

Find geometric shapes in images.

- Helix trajectory \rightarrow straight line in $z \phi$ space
- Line parameters in *xy*-plane, slope *k* and intercept *m*

$$- y(x) = kx + m$$

Problem: The intercept parameter *m* unbound.

Hesse normal form

$$r = x \cos \theta + y \sin \theta$$
$$y = \left(-\frac{\cos \theta}{\sin \theta}\right) x + \left(\frac{r}{\sin \theta}\right)$$

Figure: Blue line perpendicular to red line and crosses the origin

The method:

 $I sochrone centers in z - \phi$ space

- $I sochrone centers in z \phi$ space
- ② Generate set of all lines

- Isochrone centers in $z \phi$ space
- ② Generate set of all lines
- Series → accumulator space

- $I sochrone centers in z \phi$ space
- ② Generate set of all lines
- Ø Repeat for all points

- Isochrone centers in $z \phi$ space
- ② Generate set of all lines
- Ø Repeat for all points

The method:

- Isochrone centers in $z \phi$ space
- Ø Generate set of all lines
- Observation of the second second
- Repeat for all points
- Voting procedure \rightarrow true line

True line found in maximum!

Figure: 360 lines generated for each data point in steps of 1° in θ

Method 1: Extracting helix angle

The method:

- **O** Calculate point of closest approach (POCA) from hits to true line
- 2 Accept hit with smallest POCA
- **③** Straight line fit with selected (z, ϕ) coordinates

Finish

The slope of the fitted line yields the helix angle. z_0 and p_z can now be extracted!

- z-position assigned to all skewed hits
- Extrapolate helix to first and last parallel hit \rightarrow new FairTrackParP

Skewed hits position in $Z-\phi$

Skewed hits position in Z-

The method:

 Calculate all lines between
 (z, \u03c6) points in neighboring skewed straws

Skewed hits position in Z-

- Calculate all lines between
 (z, \u03c6) points in neighboring skewed straws
- Calculate angle between all possible neighboring lines

Skewed hits position in Z-

- Calculate all lines between
 (z, \u03c6) points in neighboring skewed straws
- Calculate angle between all possible neighboring lines

Skewed hits position in Z-

- Calculate all lines between
 (z, \u03c6) points in neighboring skewed straws
- Calculate angle between all possible neighboring lines

Skewed hits position in Z-

- Calculate all lines between
 (z, \u03c6) points in neighboring skewed straws
- Calculate angle between all possible neighboring lines

Skewed hits position in Z-

- Calculate all lines between
 (z, \u03c6) points in neighboring skewed straws
- Calculate angle between all possible neighboring lines

Skewed hits position in Z-

The method:

- Calculate all lines between
 (z, \u03c6) points in neighboring skewed straws
- Calculate angle between all possible neighboring lines
- Ignore paths where $\theta < 160^\circ$ → reduces number of combinations
- Choose path with $\min(\sum \theta_i 180^\circ)$

Hits in final path chosen as true hits

Hyperon channels in $\overline{P}ANDA$

Why antihyperon-hyperon production?

- Hyperons produced at scales where QCD is poorly understood
- *CP* violation needed to describe matter in the universe
- Never-before measured hyperon states
- Measure properties *e.g.* spin of hyperons

Figure: $\Lambda\overline{\Lambda}$ production channel, scarce data above $\sqrt{s} = 4$ GeV

Figure: $\overline{\Omega}^+ \Omega^-$ production channel, never measured 18/18 Hyperon production $\overline{p}p \rightarrow \overline{Y}Y$

Figure: $\overline{p}p \to \overline{Y}Y$ in quark-gluon picture (left) and in Hadron picture (right).

Hyperons: Spin observables in $\overline{p}p \rightarrow \overline{Y}Y$

Spin observables can be used to test theoretical model. Angular distribution related to

$$I \propto \sum_{\mu,\nu=0}^{3} \sum_{k,l=0}^{3} \overline{\alpha} \alpha \chi_{kl\mu\nu} P_{k}^{B} P_{l}^{T} \overline{k}_{\mu} k_{\nu}$$

With unpolarised beam and unpolarised target, differential cross section χ_{0000} , polarisation $\chi_{00\mu0} = P_{\overline{i}}$, $\chi_{000\nu} = P_i$ and the spin correlations $\chi_{00\mu\nu} = C_{ij}$ are accessible.

Polarisation

- 3 polarisation parameters for spin-¹/₂ hyperons: P_x, P_y, P_z
- $P_x = P_z = 0$ due to strong production
- $P_y = P_{\overline{y}}$ due to rotational invariance

Spin correlation

- 9 spin correlation parameters for spin-¹/₂ hyperons: C_{i,j}
- $C_{xy} = C_{yx} = C_{yz} = C_{zy} = 0$ due to strong production
- $C_{xz} = C_{zx}$ due to rotational invariance

Hyperons: Spin observables in $\overline{p}p \rightarrow \overline{Y}Y$

Polarised Particle	None	Beam	Target	Both
None	<i>I</i> 0000	A _{i000}	A_{0j00}	A_{ij00}
Scattered	$P_{00\mu0}$	$D_{i0\mu0}$	$K_{0j\mu0}$	$M_{ij\mu0}$
Recoil	$P_{000\nu}$	$K_{i00\nu}$	$D_{0j0\nu}$	$N_{ij0\nu}$
Both	$C_{00\mu\nu}$	$C_{i0\mu\nu}$	$C_{0j\mu\nu}$	$C_{C_{ij\mu\nu}}$

• In $\overline{p}p \to \overline{Y}Y$ there are 256 spin variables in total

Hyperons: Spin observables in $\overline{p}p \rightarrow \overline{Y}Y$

Polarisation

Proton angular distribution:

$$I(\theta_p) = \frac{1}{4\pi} (1 + \alpha P_Y \cos \theta_p)$$

 $\overline{\alpha}, \alpha$ - decay asymmetry parameter

Spin correlation

Nucleon angular distribution:

$$I(heta_i, heta_j) = rac{1}{16\pi^2}(1+$$

$$\overline{\alpha}\alpha\sum_{i,j}\mathbf{C}_{ij}\cos\theta_i\cos\theta_j)$$

18

Accessible hyperons at $\overline{P}ANDA$

