

Updates of DISC Software

<u>Mustafa Schmidt</u>, Simon Bodenschatz, Michael Düren, Erik Etzelmüller, Klaus Föhl, Avetik Hayrapetyan, Oliver Merle, Julian Rieke

September 13, 2016

Full Simulation Chain

PndDiscSensorMCPoint()

- Photon Hit Position: fX, fY, fZ
- Photon Entering Position: photon_entering_pos (fX, fY, fZ)
- Photon Hit Momentum: fPx, fPy, fPz
- Photon Entering Momentum: photon_entering_mom (fX, fY, fZ)
- Reflection Angle: internal_reflecting_angle

PndDiscParticleMCPoint()

- Particle Incoming Position: fX, fY, fZ
- Particle Outgoing Position: pos_out (fX, fY, fZ)
- Particle Incoming Momentum: fPx, fPy, fPz
- Particle Outgoing Momentum: mom_out (fX, fY, fZ)
- PDG Code: pdgCode
- Particle Charge: charge
- Particle Mass: mass

Digitization, Reconstruction, PID Output

PndDiscTaskDigitization()

- Detector ID: detector_id
- Readout ID: readout_id
- Sensor ID: sensor_id
- Pixel Number: pixel_number
- Pixel Position: pixel_position
- TDC Time: tdc_time

PndDiscPID()

- Likelihood π : loglikepion
- Likelihood K: loglikekaon
- Likelihood p: loglikeproton

PndDiscReconResult()

- Sensor ID: sensor
- Pixe ID: pixel
- Time: time
- Hypothesis: hypothesis

PndDiscCherenkovResult()

• Cherenkov angle: cherenkov_angle

Mustafa Schmidt

Adding Event Display

Fixed Problems

- Problem in ROOT::Math::Interpolation::kLINEAR \rightarrow PDE inside digitization could not be used until now
- Library **libMathMore** added to the dependencies in CMakeLists.txt

Other Problems:

• DEPENDENCIES was written wrong in CMakeLists.txt

Changes in Track Reconstruction

 Possibility to use Monte-Carlo tracks or reconstructed tracks with GenFit:

PndDiscTaskReconstruction :: *UseTrueTracks*(*kTRUE*/*kFALSE*)

 Getting position and momentum information with: TClonesArray *tclarr_track (TClonesArray*) io_manager->GetObject("SttMvdGemGenTrack"); PndTrack *track = (PndTrack*)tclarr_track->At(i); FairTrackParP par = track->GetParamLast();

• Calculating position on radiator disk assuming straight line:

$$\left(\begin{array}{c} x_{Disc} \\ y_{Disc} \end{array}\right) = \frac{z_{Track} - z_{Disc}}{p_z} \cdot \left(\begin{array}{c} p_x \\ p_y \end{array}\right)$$

Resolution Studies for GenFit

Spatial and momentum resolution of Protons with $p=4\,{\rm GeV/c}$ and $\theta=15^\circ$

7/18

Script added for calibration of Focusing Elements using Monte-Carlo hits with random φ angles:

Values are used for the hit pattern calculation

Cherenkov Angle Reconstruction

Mustafa Schmidt

Updates of DISC Software

Reconstructed Chernekov Angle

Particle momentum $p = 3 \, {\rm GeV/c}$, polar angle $\theta = 15^\circ$

Hitpattern Matching

Reconstruction Results

Hit pattern matching for particle momentum p = 3 GeV and polar angle $\theta = 15^{\circ}$:

Used bandpass filter 360-465 nm including PDE

Particle Identification

Momentum p = 4 GeV/c, polar angle $\theta = 15^{\circ}$

- PID in principle working in PandaRoot (results not sufficient until now)
- Cleaning of unnecesary code
- Better implementation of code into PandaRoot framework
- Improvement of reconstruction algorithm
- Testing PID with specific benchmark channel

Thank you very much for your attention!

Backup Slides

Theoretical Model

Angle Definitions:

Theoretical Model

Calculation of the Cherenkov angle:

 $\theta_{c} = \arccos(\sin \theta_{p} \cos \phi_{rel} \cos \varphi + \cos \theta_{p} \sin \varphi)$ (1)

- θ_p : θ angle of particle
- $\phi_{\it rel}$: angular difference between ϕ angle of particle and photon
- φ : Angle between total reflected photon and radiator disk surface

Calculation of φ if θ_c is known:

$$\cos\varphi = \frac{A\cos\theta_c}{B} \pm \sqrt{\frac{\cos^2\theta_p - \cos^2\theta_c}{B} + \left(\frac{A\cos\theta_c}{B}\right)} \quad (2)$$

with $A = \sin \theta_{p} \cos \phi_{\rm rel}$ and $B = A^{2} + \cos^{2} \theta_{p}$