

Updates to the Circle Hough Trackfinding Algorithm

L. BIANCHI

PANDA CM58 | HIM, Mainz | Sep 14, 2016

Circle Hough Algorithm

- Circle Hough algorithm principles
 - Generate all possible tracks
 - Accumulate track parameters
 - Most likely parameters \Longrightarrow real tracks

Circle Hough Algorithm

- Circle Hough algorithm principles
 - Generate all possible tracks
 - Accumulate track parameters
 - Most likely parameters \Longrightarrow real tracks
- CH Features
 - High efficiency
 - Flexibility
 - Applicable to all types of hits in the central detector
 - Robustness/stability
 - Intrinsic parallelism
 - Tuneability: computing vs physics performance
 - Online/offine: same algorithms with different working points
 - Hit association and extraction of track parameters at the same time
 - Information from STT isochrone radius taken into accout

- Hough element: projection of primary track in the transverse plane
 - \Longrightarrow Circle passing through IP and hit
- Circle uniquely described by center: 2D parameter space
 - Use one parameter as sampling parameter
 - Calculate center coordinates from hit contact condition

- Hough element: projection of primary track in the transverse plane
 - \Longrightarrow Circle passing through IP and hit
- Circle uniquely described by center: 2D parameter space
 - Use one parameter as sampling parameter
 - Calculate center coordinates from hit contact condition
- 1 Direct calculation
 - For each hit, calculate (x, y) from set of *R* values
 - Accumulate coordinates in (x, y) Accumulator Array

- Hough element: projection of primary track in the transverse plane
 - \Longrightarrow Circle passing through IP and hit
- Circle uniquely described by center: 2D parameter space
 - Use one parameter as sampling parameter
 - Calculate center coordinates from hit contact condition
- 1 Direct calculation
 - For each hit, calculate (x, y) from set of *R* values
 - Accumulate coordinates in (x, y) Accumulator Array
- 2 Equation of circle centers known analytically
 - Locus is hyperbola or straight line
 - Accumulate parameters exploiting locus properties (rasterization, analytical intersection)

Hit Pair CH

- Find intersections of Hough loci belonging to different hits
- ⇒ Consider directly pairs of hits
 - Hough element: primary track compatible with two hits
 Circle passing through IP, tangent to two hits at the same time
 - Explicit analytical solution: problem of Apollonius
 - "Given three circles, find circles tangent to all of them"
 - For primary tracks: one of the circles is IP (Apollonius PCC)
 - Combinatorial complexity, but 1 fewer degree of freedom

Hit Pair CH: Peakfinding

Identify most likely track parameters

- Extract hit information from Hough elems in peak region
- Calculate track parameters from coordinates of peak region
- Basic strategy: 2D Accumulator Array (histogram) + peakfinding

Hit Pair CH: Peakfinding

- Features of peakfinding
 - Hough elems aligned in ρ direction
 - "Critical density" close to the real peak
 - $-\left(
 ho,arphi
 ight)$ less coupled for Hit Pair CH
- Strategies
 - 2D peakfinding: rel. threshold + local maximum
 - Also considered: "striped" peakfinding in parallel in one direction
 + combine with reduce/fold algorithm
- Caveats
 - Discrete binning causes artifacts and unstable behavior
 - Tune parameters
 - One simple solution:
 - 1 Use (binned) peakfinding to find location of peak
 - 2 Select (unbinned) Hough elems in interval centered on peak

Testing the algorithm

- PandaRoot data
- Single tracks generated with BoxGenerator
- Useful for:
 - Algorithm exploration/optimization
 - Approximate indication for later, more accurate physics performance tests
- At this point, definitely not useful for:
 - Quoting performance numbers

Performance

Set of \sim 70 tracks

Mitglied der Helmholtz-Gemeinschaft

Performance

Set of \sim 70 tracks

Width of ρ Interval

ī a n)d a

- Features of candidate tracks calculated by combining info from Hough elems in interval around peak position
- Main parameter: width of interval in p direction
- Tradeoff between: coverage, purity, pt resolution, ...

Width of ρ Interval

ī a n)d a

- Features of candidate tracks calculated by combining info from Hough elems in interval around peak position
- Main parameter: width of interval in p direction
- Tradeoff between: coverage, purity, pt resolution, ...

Width of ρ Interval

Width of ρ Interval

(
ho, arphi) Bin Width

- Performance of peakfinding depends on binning of AA
- Vary N_ρ, N_φ at the same time
- Study inpact of performance metrics on 2D grid

(
ho, arphi) Bin Width

 (ρ, φ) Bin Width

Binning

Summary & Outlook

- Work in progress
 - Characterization of algorithm
 - Exploration of parameter space
 - Optimization
 - Identify performance tradeoffs
 - Systematic testing with PandaRoot simulated data
 - Single tracks (BoxGenerator)
 - Full events (background; physics channels; ...)
- In the immediate future
 - Reference implementation of algorithm in C/C++
 - Identify performance bottlenecks ⇒ Parallelization targets
 - Integration with PandaRoot

Backup—Single Hit CH with ρ/φ Coord. JÜLICH

Central idea: use one set of sampling values $(R_0 \dots R_N)$ for all hits

- Use radial coordinates (ρ, φ) of centers
 - Physically meaningful: $ho \propto p_t$
- Cells of AA in ρ direction coincide with *R* values
 - Peakfinding greatly simplified
 - Optimal patterns for filling in parallel (memory writes)
- Improve pt resolution: "zooming in" recursively
 - Use same points in subregion of AA with finer density in φ direction