

# Reconstruction of charged particle tracks with the PANDA EMC

### **Thanachot Nasawad**

Suranaree University of Technology Thailand

13 September 2016 HIM

## **PANDA Experiment**



2

## Straw Tube Tracker



• Tracking charged particles

# Electromagnetic Calorimeter



• Measuring the total energy of charged particles and photons

# Reconstruction of charged particle tracks



![](_page_4_Picture_2.jpeg)

• Extrapolating particle trajectories from STT surface onto the inner surface of EMC

D a nd

## Geane propagator

![](_page_5_Figure_1.jpeg)

- GEANE uses the position and momentum of the tracks from STT by taking into account magnetic field, detector geometry and energy loss in the material
- GEANE currently is taking a long CPU time to process.

Our goal is to find other propagation methods which give similar results as GEANE but use less CPU time to process.

# **EMC** quality

![](_page_6_Picture_1.jpeg)

![](_page_6_Figure_2.jpeg)

 EMC quality is the smallest distance between EMC cluster and Propagated point [cm<sup>2</sup>]

![](_page_6_Picture_4.jpeg)

### Method

![](_page_7_Picture_1.jpeg)

![](_page_7_Figure_2.jpeg)

\*We develop these codes by ourselves with the help from experts at Juelich.

# **Proposed propagators**

#### Linear propagator

- Using the position and momentum vector from the STT
- Extrapolating as a linear track

#### Helix propagator

 Including the magnetic field to propagate the track under the Lorentz force

![](_page_8_Figure_6.jpeg)

![](_page_8_Figure_7.jpeg)

![](_page_8_Picture_8.jpeg)

### EMC quality of single charged muon

![](_page_9_Figure_1.jpeg)

- EMC quality depends on transverse momentum
- Helix propagator and GEANE propagator give similar results

Danda

# **EMC** quality ratio

![](_page_10_Figure_1.jpeg)

• Helix propagator gives better results than Linear propagator

11

# **CPU time**

![](_page_11_Figure_1.jpeg)

- Linear and Helix propagators are 2-3 orders of magnitude faster than GEANE
- Helix propagator could replace GEANE

![](_page_12_Picture_0.jpeg)

![](_page_12_Picture_1.jpeg)

Successfully implemented a new method in PANDAroot to propagate particles from the STT to the EMC surface with

- Quality similar to GEANE (Helix propagator)
- Significant gain of speed

### **Simplex algorithm**

- We implemented a generalized framework for optimization including the Simplex algorithm
- Finding the minimum of a J-dimensional function
- Move the geometrical shape (simplex) towards the minimum.

![](_page_13_Figure_4.jpeg)

### **Parallel Simplex**

- The Parallel Simplex follows same logic as standard simplex
- The Parallel Simplex updates the P worst points
  - standard simplex only updates one point
    - $(A_0, A_1, ..., A_{J-P}, A_{J-P+1}, A_{J-P+2} ..., A_{J})$
- Using P processors which can be defined by user
- P needs to be smaller than the dimension of the problem

# Simplified diagram of the framework

![](_page_15_Figure_1.jpeg)

### Comparing parallel and non parallel Simplex

![](_page_16_Figure_1.jpeg)

![](_page_16_Figure_2.jpeg)

![](_page_16_Figure_3.jpeg)

### Summary

- Successful implementation of a framework for function minimization
- Implementation of two particular optimization algorithms:
  - Nelder-Mead Simplex algorithm
  - Its parallel implementation
- The parallel Simplex converges faster and gives better results
- Future plan: Integrate the developed Simplex algorithm into the Geneva framework

![](_page_18_Picture_0.jpeg)

# Thank you for your attention