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Outline
Coulomb gauge QCD is very physical and Gauß’ law
rules (as I’ll try to show), but this comes at the
expense of covariance: it is also very technical (as I’ll
try not to show). . .

• Temporal zero modes, total charge and physical
degrees of freedom

• Slavnov–Taylor identities (STids)
• Ghost Dyson–Schwinger equation (DSe)
• Summary and outlook
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Charge!
Consider (continuum) Yang–Mills theory:

Z =

∫

DΦ exp {ıSY M}, SY M =
1

2

∫

dx
[

E2 − B2
]

in terms of spatial (~A) and temporal (A0) gauge fields.

Importantly,E is linear inA0.
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Charge!
To fix to Coulomb gauge,~∇· ~A = 0, use Faddeev–Popov:

1 =

∫

Dθδ
(

~∇· ~Aa

)

Det
[

−~∇· ~D
]

.

Since−~∇· ~D only involves spatial operators, we still have

spatially independent (time-dependent) gauge transformsand

there are temporal zero-modes (not to mention the usual Gribov

copies)!

Replace Det in the identity withDet, the determinant with the

zero-modes removed.
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Charge!
Now we convert to first order formalism by introducing an

auxiliary field~π:

exp

{

ı

2

∫

E2

}

→
∫

Dπ exp

{

ı

2

∫

(

π2 − 2~π · ~E
)

}

,

then split~π into transverse (~∇ · ~π⊥a = 0) and longitudinal (~∇φ)

parts. The action is linear inE (∼ A0) so integrate out to leave a

δ-functional constraint (Gauß’ law):

Z =

∫

DΦδ
(

~∇· ~Aa

)

δ
(

~∇·~π⊥a

)

Det
[

−~∇· ~D
]

×

δ
(

~∇· ~Dabφb + gρ̂a

)

exp {ıS ′},

ρ̂a = fabc ~Ab · ~π⊥c → color charge. Now forφ . . .
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Charge!
Integratingφ, and noting the temporal zero modes

δ
(

~∇· ~Dabφb + gρ̂a

)

→ δ

(
∫

d~xρ̂a

)

Det
[

−~∇· ~D
]−1

δ (φ + . . .)

gives us then

Z =

∫

DΦδ
(

~∇· ~Aa

)

δ
(

~∇·~π⊥a

)

δ

(
∫

d~xρ̂a

)

exp {ıS}

with the final effective action

S =

∫

dx

[

~π⊥ ·∂0
~A − B2

2
− π⊥2

2

+
g2

2
ρ̂

(

−~∇· ~D
)−1

∇2

(

−~∇· ~D
)−1

ρ̂

]

.
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No charge!
Thanks to Gauß’ law, our system has the following properties:

• two (physical) transverse degrees of freedom (~A, ~π⊥) with

a conserved and vanishing total charge (
∫

d~xρ̂ = 0)

• ghosts and temporal zero modes have gone away and there

are no energy divergences

— the zero modes of the Faddeev–Popov operator are an

expression of the Gribov problem. The temporal zero

modes give rise to the total charge, what about the spatial

zero modes (genuine Gribov copies)?

• the gauge is temporally fixed

However, this is formal and non-local. . .
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Slavnov–Taylor identities
To solve Dyson–Schwinger equations, we need a truncation

scheme for vertices. This is done via Slavnov–Taylor identities.

Go back to the original (local) action and fix to Coulomb gauge:
~∇· ~A = 0. . . Ghost term looks like

SFP =

∫

dx
[

−ca~∇· ~Dabcb

]

Because−~∇· ~D only involves spatial operators, we have

invariance under a Gauß-BRST transform – atime-dependent

BRS transform (N.B.θ → θ(t, ~x)):

θa

x
= ca

x
δλt.

D. Zwanziger, Nucl. Phys. B518 (1998) 237.
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STids: 2-point
After some work, for the 2-point proper functions...

k0Γ00(k0, ~k) = ı
ki

~k2
Γ0Ai(k0, ~k)Γcc(q0 + k0, ~k)

k0ΓA0k(k0, ~k) = ı
ki

~k2

ΓAAki(k0, ~k)Γcc(q0 + k0, ~k)

• analogue of Landau gauge transversality

• gluon polarization is not transverse (even at tree-level)

• inverse ghost propagator independent of energy

• A0-leg Green’s functions known in terms of others

– (local) elimination ofA0-field (Gauß’ law)!
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STids: n-point
After lots more work, for the 3 & 4-point proper functions...

• STids form closed sets from whichA0-leg Green’s

functions known in terms of others

– (local) elimination ofA0-field (Gauß’ law)!

• ⇒ It is possible that the Gauß-BRST charge can be

identified with the physical charge, à la Kugo–Ojima

(unlike, as it appears, in Landau gauge)

• g2W00 is RG invariant

K. -I. Kondo, arXiv:0907.3249. . .
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Ghost DSe

-
-1-1

=

• tree-level vertex

• lattice gluon input (m ≈ 2
√

σ ≈ 0.88GeV):

WAA(p) ∼ 1

(p2

0
− ~p2)

~p2

√

~p4 + m4

• no gluon anomalous dimension,WAA(0) = 1/m2 finite!

• regularize by subtracting at~p2 = 0 ⇒ Γcc(0) is an

independent input.

G. Burgio, M. Quandt, H. Reinhardt, PRL 102, 032002.
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Ghost DSe
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Ghost DSe
• DSes are (functional) differential equations

– more than one solution is possible with differentΓcc(0)

• IR finite gluon can still give divergent ghost dressing

(unlike Landau gauge)

• For the powerlaw solution

g2W00 ∼
1

~p2Γ2

cc
ΓAA

∼ σ

~p4
?
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Summary and outlook
• Coulomb gauge is a physical choice

• Gauß’ law dominates

• two transverse degrees of freedom

• vanishing and conserved total charge

• STids come from Gauß-BRST

• ghost DSe (toy version)

To do:

• investigate the physical/Gauß-BRST charge further

• solve the other DSes: isg2W00 ∼ σ/~p4? (in progress)

• find the physical input forΓcc(0)
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