Exact renormalisation group at finite temperature

"Quarks, Hadrons, and the Phase Diagram of QCD"
St Goar
2 Sept. 2009

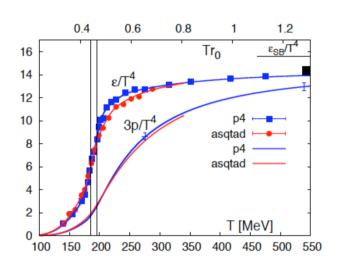
Jean-Paul Blaizot, IPhT-Saclay

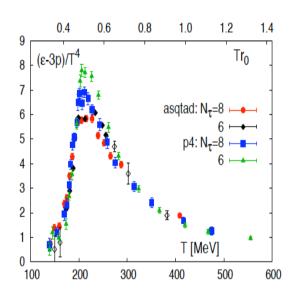
Outline

- weak coupling techniques and why they are useful to understand hot QCD
- insights from the exact Renormalization Group

Hot QCD

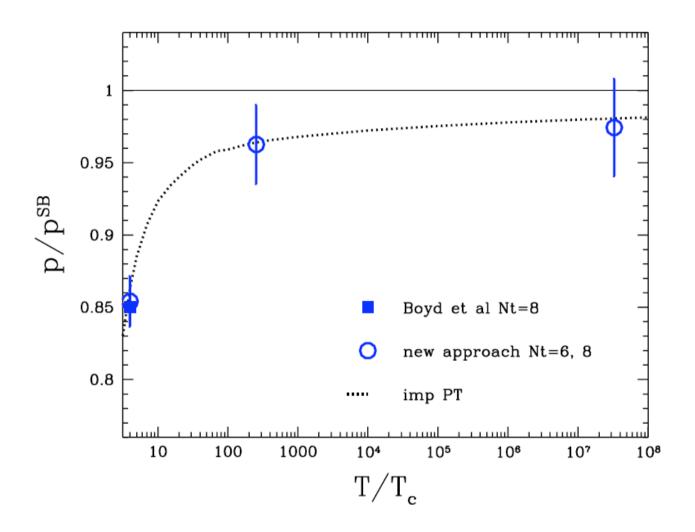
Thermodynamics of hot QCD





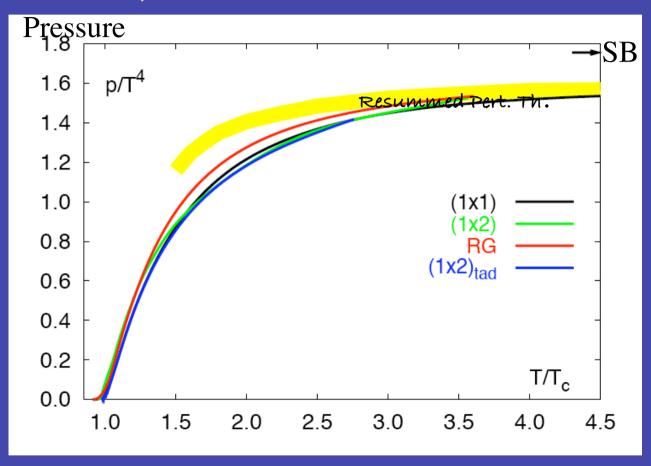
(from M. Bazavov et al, arxiv:0903.4379)

Pressure for SU(3) YM theory at (very) high temperature



(from G. Endrodí et al, arxív: 0710.4197)

At T>3Tc Resummed Pert. Theory accounts for lattice results



(SU(3) lattice gauge calculation from Karsch et al, hep-lat/0106019)

(resummed pert. th. from J.-P. B., E. lancu, A. Rebhan: Nucl.Phys.A698:404-407,2002)

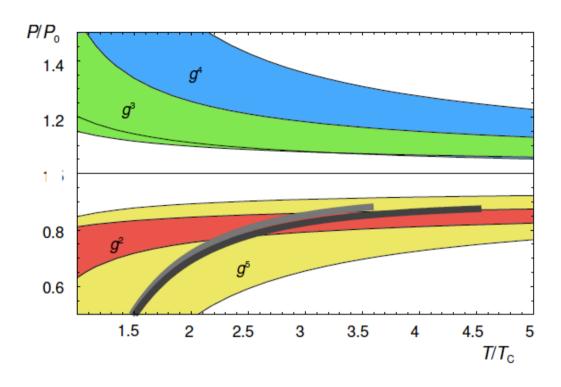
Weak coupling techniques (non perturbative)

-not limited to perturbation theory; in fact weak coupling techniques can be used to study non perturbative phenomena (many degenerate degrees of freedom, strong fields)

Effective theories-Dimensional reduction

Skeleton expansion (2PI formalism)

Perturbation theory is ill behaved



Perturbation theory:

g²: Shuryak; Chin (1978) g³: Kapusta (1979) g⁴ In g: Toimela (1983) g⁴: Arnold, Zhai (1994) g⁵: Zhai, Kastening (1995), Braaten, Nieto (1996)

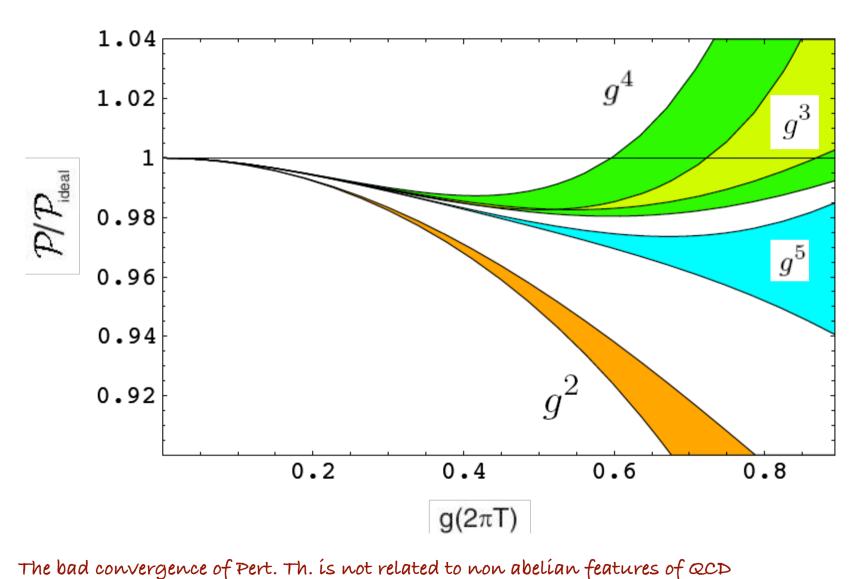
g⁶ In g: Kajantie, Laine, Rummukainen, Schröder (2002)

g⁶ (partly): Di Renzo, Laine,Miccio,Schröder, Torrero (2006)

Lattice data: G. Boyd et al. (1996); M. Okamoto et al. (1999).

A two naive conclusion:

« weak coupling techniques are useless »



Effective theroy Dimensional reduction

Integration over the hard modes $(gT \le \Lambda_E \le T)$

$$\mathcal{L}_E = \frac{1}{2} \text{Tr} F_{ij}^2 + \text{Tr} \left[D_i, A_0 \right]^2 + m_E^2 \text{Tr} A_0^2 + \lambda_E \left(\text{Tr} A_0^2 \right)^2 + \cdots$$
$$D_i = \partial_i - i g_E A_i$$

In leading order $g_E pprox g\sqrt{T}$ $m_E pprox gT$ $\lambda_E pprox g^4T$

$$g_E \approx g\sqrt{T}$$

$$m_E \approx gT$$

$$\lambda_E \approx g^4 T$$

Integration over the soft modes $(g^2T \le \Lambda_M \le gT)$

$$(g^2T \le \Lambda_M \le gT)$$

$$\mathcal{L}_M = \frac{1}{2} \text{Tr} F_{ij}^2 + \cdots$$

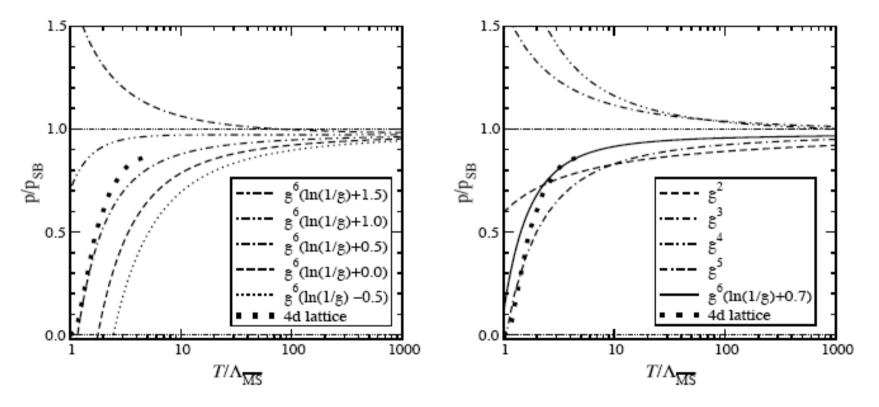
$$D_i = \partial_i - ig_M A_i$$

 $g_M^2 \sim g_E^2$

Non perturbative contribution

E. Braaten and A. Nieto, Phys. Rev. D 51 (1995) 6990 , Phys. Rev. D 53 (1996) 3421

$$p = T^4 \left[c_0 + c_2 g^2 + c_3 g^3 + (c_4' \ln g + c_4) g^4 + c_5 g^5 + c_6 g^6 \right]$$
$$c_6 = N_c^3 \frac{N_c^2 - 1}{(4\pi^4)} \left[\left(\frac{215}{12} - \frac{805}{768} \pi^2 \right) \ln \frac{1}{g} + 8 \delta \right]$$



K. Kajantie, M. Laine, K. Rummukainen, and Y. Schröder, Phys. Rev. Lett. 86 (2001) 10, Phys. Rev. D 65 (2002) 045008, Phys. Rev. D 67 (2003) 105008, JHEP 0304 (2003) 036

Skeleton expansion Phi-derivable approximations 2PI formalism

- J. M. Luttinger and J. C. Ward, PR 118, 1417 (1960)
- G. Baym, PR127,1391(1962)
- J. M. Cornwall, R. Jackiw, and E. Tomboulis, PR D10, 2428 (1974)

Pressure in terms of dressed propagators

$$-P = \int \frac{d^4k}{(2\pi)^4} \, n(\omega) \left(\operatorname{Im} \log \, \mathbf{G}^{-1} - \operatorname{Im} \, \Pi \, \mathbf{G} \right) + T \, \Phi[\mathbf{G}] \, / \, V$$

$$\Phi[G] = \bigcirc + \bigcirc + \cdots$$

2PI = 2-particle irreducible

$$G^{-1} = G^0 + \Pi[G]$$

$$\Pi = 2 \frac{\delta \Phi[G]}{\delta G} = \underline{\qquad} + \underline{\qquad} + \dots$$

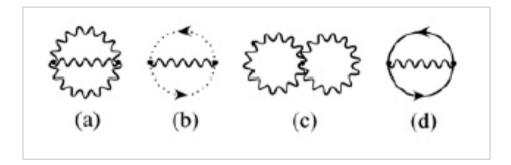
Stationarity property

$$\frac{\delta P}{\delta G} = 0$$

Entropy is simple!

$$S = \frac{dP}{dT} = \frac{dP}{dT}\bigg|_{G}$$

THE TWO-LOOP ENTROPY

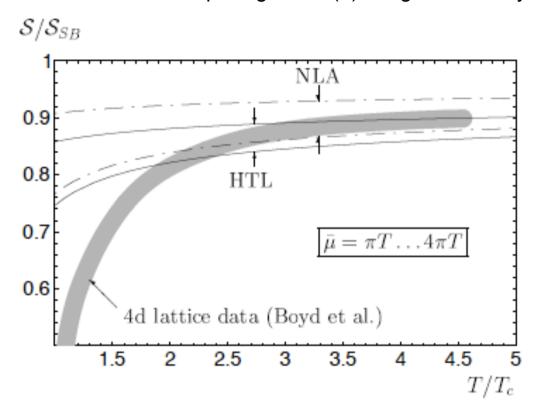


$$S = -\int \frac{\mathrm{d}^4 p}{(2\pi)^4} \frac{\partial N}{\partial T} \left\{ \operatorname{Im} \ln D^{-1} - \operatorname{Im} \Pi \operatorname{Re} D \right\}$$

- -effectively a one-loop expression; residual interactions start at order three-loop
- -manifestly ultraviolet finite
- -perturbatívely correct up to order g^3

State of the art

pure-glue SU(3) Yang-Mills theory

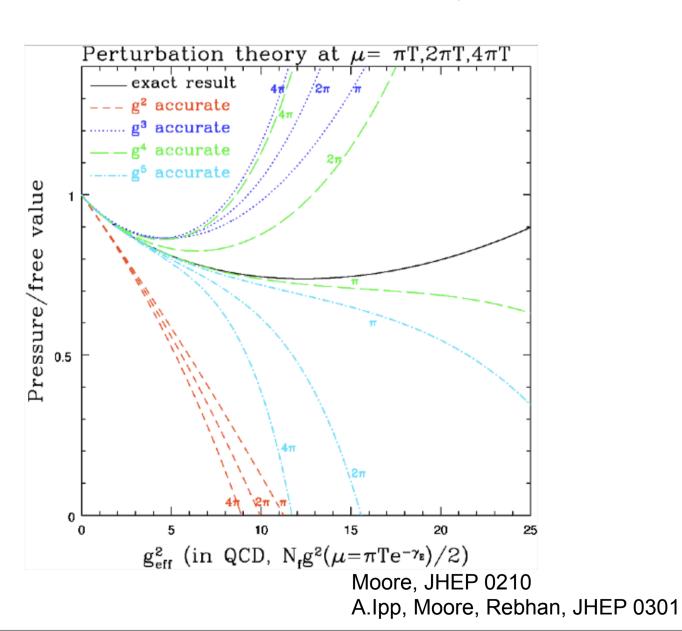


from J.-P. B., E. Iancu, A. Rebhan: Nucl.Phys.A698:404-407,2002

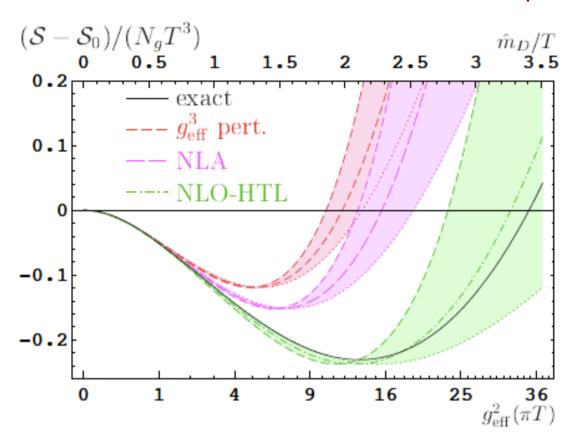
- J.-P. B., E. Iancu, A. Rebhan: Phys.Rev.D63:065003,2001
- G. Boyd et al., Nucl. Phys. B469, 419 (1996).

Large Nf

Pressure at Large Nf



Entropy in large Nf



Good agreement, even at large coupling

J.-P. B., A.Ipp, A. Rebhan, U. Reinosa, hep-ph/0509052

Strong coupling Comparison with SSYM

Hard-thermal-loop entropy of supersymmetric Yang-Mills theories J.-P. B, E. Iancu, U. Kraemmer and A. Rebhan, hep-ph/0611393

Entropy formula

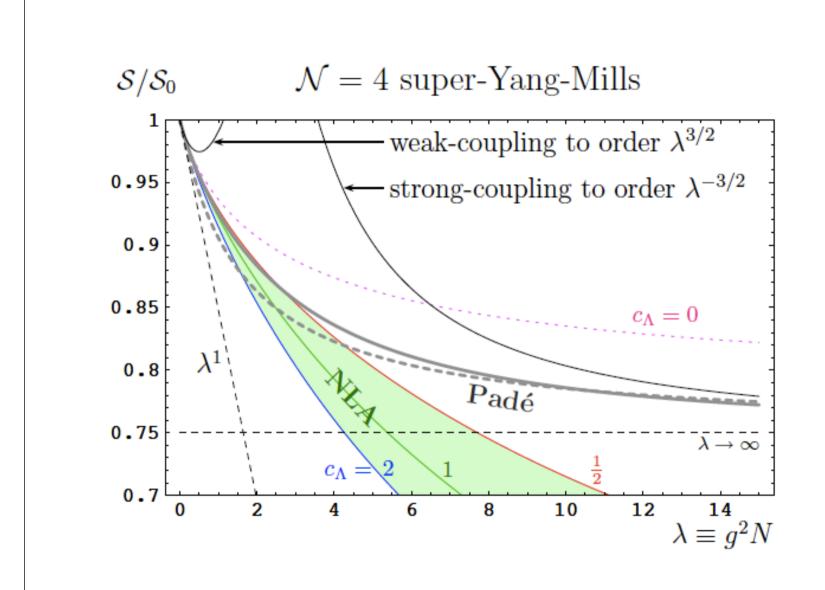
$$S = -\operatorname{tr} \int \frac{d^4k}{(2\pi)^4} \frac{\partial n(\omega)}{\partial T} \Big[\operatorname{Im} \log D^{-1} - \operatorname{Im} \Pi \operatorname{Re} D \Big]$$
$$-2\operatorname{tr} \int \frac{d^4k}{(2\pi)^4} \frac{\partial f(\omega)}{\partial T} \Big[\operatorname{Im} \log S^{-1} - \operatorname{Im} \Sigma \operatorname{Re} S \Big] + S'$$

Leading order correction

$$S_2 = -T \left\{ \sum_b \frac{m_{\infty(b)}^2}{6} + \sum_f \frac{m_{\infty(f)}^2}{12} \right\}$$

At strong coupling (AdS/CFT)

$$\frac{S}{S_0} = \frac{3}{4} + \frac{45}{32} \varsigma(3) \frac{1}{\lambda^{3/2}} \qquad (\lambda = g^2 N_c)$$



Insights from the functional renormalization group (scalar theory)

J.-P.B, A. Ipp, R. Mendez-Galaín, N. Wschebor (Nucl.Phys.A784:376-406,2007) and work in progress

Scales, fluctuations and degrees of freedom in the quark-gluon plasma

$$\langle (\partial A)^2 \rangle$$
 $g^2 \langle A^4 \rangle \sim g^2 \langle A^2 \rangle^2$

Hard degrees of freedom: the plasma particles

$$k \sim T$$
 $\langle A^2 \rangle_T \sim T^2$ $\langle (\partial A)^2 \rangle_T \sim T^4$ $g^2 \langle A^2 \rangle_T^2 \sim g^2 T^4$

Soft degrees of freedom, collective modes

$$k \sim gT$$
 $\langle A^2 \rangle_{gT} \sim gT^2$ $\langle (\partial A)^2 \rangle_{gT} \sim g^3 T^4$ $g^2 \langle A^2 \rangle_{gT}^2 \sim g^4 T^4$

Ultrasoft degrees of freedom, unscreened magnetic fluctuations

$$k\sim g^2T \qquad \langle A^2\rangle_{g^2T}\sim g^2T^2 \qquad \langle (\partial A)^2\rangle_{g^2T}\sim g^6T^4 \qquad g^2\langle A^2\rangle_{g^2T}^2\sim g^6T^4$$

Non perturbative renormalization group

Effective field theories

Λ

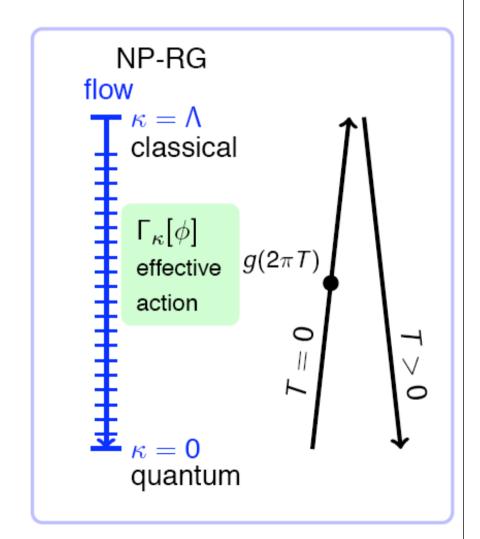
 $\sim T$ QCD

 $\Lambda_1 \sim \sqrt{g}T$

 $\sim gT$ EQCD

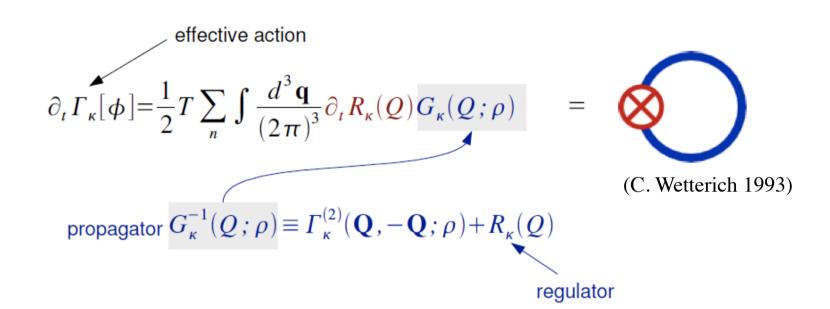
 $\Lambda_1 \sim g^{3/2}T$

 $\sim g^2 T$ MQCD



Courtesy, A. Ipp

Non perturbative renormalization group



four-momentum vectors:

$$\mathbf{Q} = (\omega_n, \mathbf{q})$$
$$Q = |\mathbf{Q}|$$

Matsubara frequency $\omega_n = 2 \pi n T$

momentum derivative: $\partial_t \equiv \kappa \, \partial_\kappa$

scalar field: $\rho \equiv \frac{1}{2} \phi^2$

Local potential approximation

$$\Gamma_k^{LPA}[\phi] = \int d^d x \left\{ \frac{1}{2} \partial_\mu \phi \partial_\mu \phi + V_k(\phi) \right\}$$

$$\partial_t V_{\kappa}(\rho) = \frac{1}{2} T \sum_n \int \frac{d^3 \mathbf{q}}{(2\pi)^3} \partial_t R_{\kappa}(\mathbf{Q}) G_{\kappa}(\mathbf{Q}; \rho)$$

propagator
$$G_{\kappa}^{-1}(Q;\rho) \equiv \frac{\Gamma_{\kappa}^{(2)}(\mathbf{Q},-\mathbf{Q};\rho)}{\Gamma_{\kappa}^{(2)}(\mathbf{Q},-\mathbf{Q};\rho)} + R_{\kappa}(Q)$$

$$\Gamma_{\kappa}^{(2)}(\mathbf{Q}, -\mathbf{Q}; \rho) = Q^2 + m_{\kappa}^2(\rho) \quad \text{with } m_{\kappa}^2(\rho) \equiv \frac{\partial^2 V_{\kappa}}{\partial \phi^2}$$

Beyond the local potential approximation

(J.-P. B, R. Mendez-Galaín, N. Wschebor, Phys. Lett. B632:571-578,2006)

$$\frac{\partial_{t} \Gamma_{\kappa}^{(2)}(\mathbf{P}, -\mathbf{P}; \rho)}{\left(2\pi\right)^{3}} = T \sum_{n} \int \frac{d^{3} \mathbf{q}}{(2\pi)^{3}} \partial_{t} R_{\kappa}(Q) G_{\kappa}^{2}(Q; \rho) \times \left\{ \Gamma_{\kappa}^{(3)}(\mathbf{P}, \mathbf{0}, -\mathbf{P} - \mathbf{0}; \phi) G_{\kappa}(\mathbf{Q} + \mathbf{P}; \rho) \Gamma_{\kappa}^{(3)}(-\mathbf{P}, \mathbf{P} + \mathbf{0}, -\mathbf{0}; \phi) - \frac{1}{2} \Gamma_{\kappa}^{(4)}(\mathbf{P}, -\mathbf{P}, \mathbf{0}, -\mathbf{0}; \phi) \right\}$$

close equations with:

$$\Gamma_{\kappa}^{(3)}(\mathbf{P}, -\mathbf{P}, \mathbf{0}; \phi) = \frac{\partial \Gamma_{\kappa}^{(2)}(\mathbf{P}, \rho)}{\partial \phi}, \quad \Gamma_{\kappa}^{(4)}(\mathbf{P}, -\mathbf{P}, \mathbf{0}, \mathbf{0}; \phi) = \frac{\partial^{2} \Gamma_{\kappa}^{(2)}(\mathbf{P}, \rho)}{\partial \phi^{2}}$$

Application to critical O(N) model

(from F. Benítez, J.-P. Blaízot, H. Chate, B. Delamotte, R. Mendez-Galaín, N. Wschebor, arxív:0901.0128 [cond-mat.stat-mech])

TABLE I: Coefficient c and critical exponents for the O(N) models for d=3.

\overline{N}	BMW				6-loop					Monte-Carlo			
	η	ν	ω	\boldsymbol{c}	η	ν	ω	c	$\operatorname{Ref.}^a$	η	ν	\boldsymbol{c}	$\operatorname{Ref.}^a$
0	0.034	0.588	0.80		0.0285(6)	0.5881(8)	0.803(3)		[11]	0.030(3)	0.5872(5)		[12]
1	0.039	0.630	0.78	1.15	0.0335(6)	0.6303(8)	0.792(3)	1.07(10)	[11][15]	0.0368(2)	0.63020(12)	1.09(9)	[20][14]
2	0.041	0.672	0.78	1.37	0.0349(8)	0.6704(7)	0.784(3)	1.27(10)	[11][15]	0.0381(2)	0.6717(1)	1.32(2)	[21][13]
3	0.040	0.709	0.75	1.50	0.0350(8)	0.7062(7)	0.783(3)	1.43(11)	[11][15] no	n 0.0375(5)	0.7112(5)		[22]
4	0.038	0.738	0.74	1.63	0.0350(45)	0.741(6)	0.774(20)	1.54(11)	[23][15]	0.0365(10)	0.749(2)	1.60(10)	[24][14]
10	0.022	0.860	0.81		0.024	0.859			[17]				
100^{b}	0.0023	0.985	0.99	2.36	0.0027	0.989			[18]				

LPA: 3D regulator possible.

$$R_{\kappa}(\boldsymbol{\omega}_{n}, \mathbf{q}) = (\kappa^{2} - \mathbf{q}^{2})\theta(\kappa^{2} - \mathbf{q}^{2})$$

Litim regulator

 analytical treatment of Matsubara sums possible

$$T\sum_{n} \frac{1}{-(i\,\omega_{n})^{2} + \omega_{\kappa}^{2}} = \frac{1 + 2n\,(\omega_{\kappa})}{2\,\omega_{\kappa}}$$

 But: does not respect Euclidean invariance; frequency is not regulated

- BMW: Euclidean method.
- 4D regulator more appropriate

$$R_{\kappa}(Q) = Z_{\kappa} \kappa^2 r(Q/\kappa)$$

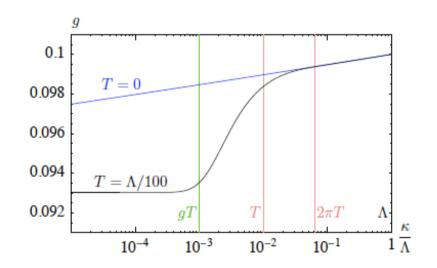
$$r(q) = \frac{\alpha q^2}{e^{q^2} - 1}$$

Exponential regulator

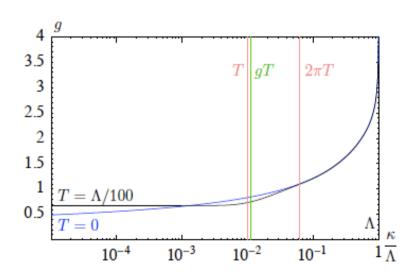
 Need to sum over Matsubara frequencies.

Flow of coupling constant (LPA)

weak coupling

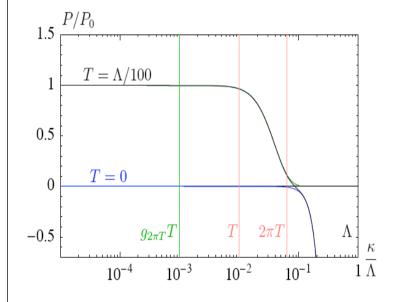


strong coupling

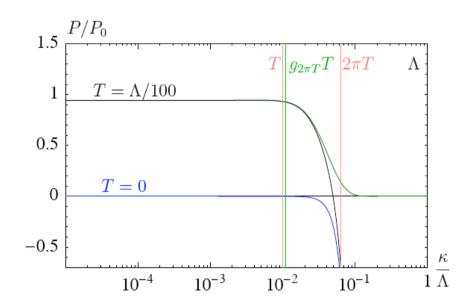


Flow of pressure (LPA)

weak coupling

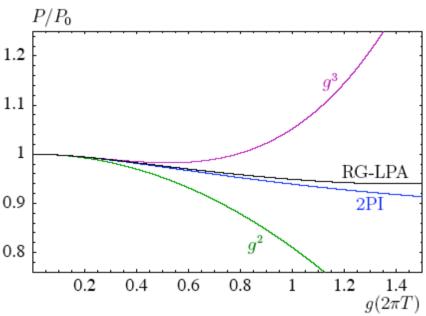


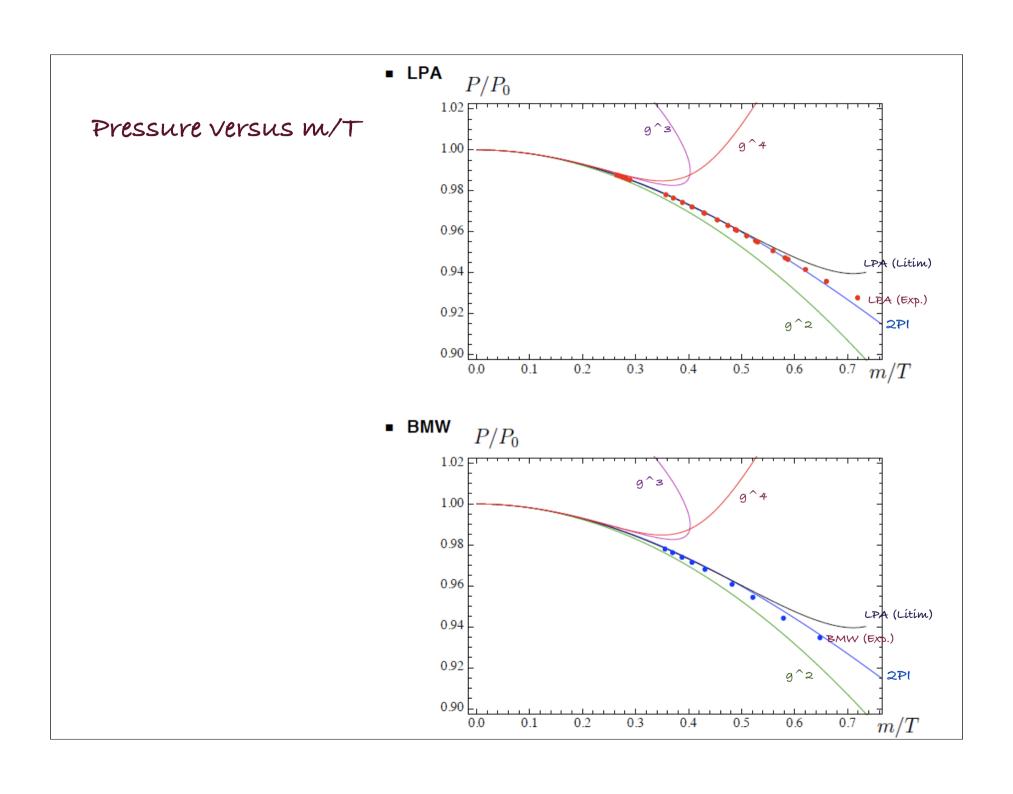
strong coupling

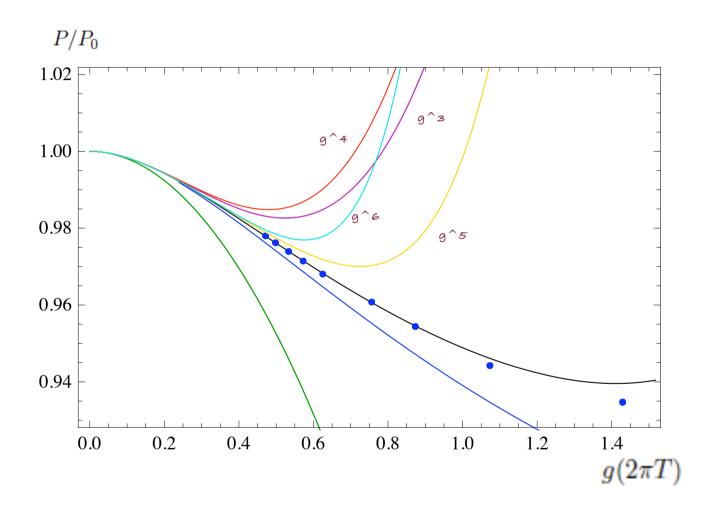


Mass and pressure as function of $g(\kappa = 2\pi T)$









(g ^ 6 from A. Gynther, et al, hep-ph/0703307)

Summary

·While strict perturbation theory is meaningless, weak coupling methods (involving resummations) provide an accurate description of the QGP for

$$T \geq 3T_c$$

• The functional renormalization group confirms results obtained with various resummations (at least in scalar case)