Peter Arnold

Gluon bremsstrahlung in QCD
plasmas at very high energy

Why interesting?

Perturbatively, gluon bremsstrahlung (and related process of pair production)
dominates energy loss of high energy particles (E>> T) traversing a quark-gluon
plasma.

Calculations complicated by the Landau-Pomeranchuk-Migdal (LPM) effect.



The . PM Effect

Naively

bremrate ~ nov ~ (density of scatterers) x

Problem

At very high energy,

X 1

probabilities of brem from successive scatterings no longer independent;

brem from several successive (small angle) collisions not very different from

brem from one collision.

—

- =
formation length

formation length < V' E

Result. a reduction of the naive brem rate.

.



I. Review of the LPM effect
QED 1953-56, QCD 1996-98

II. A theoretical puzzle PR,

ITI. Its resolution



The LPM Eftect (QED)

Warm-up: Recall that light cannot resolve details smaller than its wavelength.

[Photon emission from different scatterings have same phase - coherent.]

Now: Just Lorentz boost above picture by a lot! w



The LPM Eftect (QED)
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Note: (1) bigger Erequires bigger boost — more time dialation — longer formation length
(2) big boost — this process is very collinear.



An alternative picture

versus
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Are these two possibilities in phase? Do they interfere coherently?

YES if (i) everything is nearly collinear v
(i) particle and photon have nearly same velocity v (speed of light)




The important point:

The more collinear the underlying scattering, the longer the
formation time.

&;

Note: the formation length
depends onthe net angular deflection during the formation length, which
depends onthe formation length

[ Self-consistency — standard parametric formulas for formation length. |



The LPM Eftect (QCD)

There is a qualitative difference for soft bremsstrahlung.:

QED

Softer brem photon — longer wavelength
— less resolution
— more LPM suppression

QCD

Unlike a brem photon, a brem gluon can easily scatter from the medium.

Softer brem gluon — easier for brem gluon to scatter
— less collinearity
— less LPM suppressio—

Upshot: Soft brem more important in QCD than in QED (for high- E particles in a medium)



A theoretical puzzle (background)
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A theoretical puzzle (background)
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A theoretical puzzle (background)

medium vacuum

s T el

Naively: medium effect grows linearly with L..
For small enough L, instead grows like L* InL because of the LPM effect. [BDMPS 1996]



A theoretical puzzle (background)

medium vacuum

s T el

Naively: medium effect grows linearly with L..
For small enough L, instead grows like L* InL because of the LPM effect. [BDMPS 1996]

Assumptions I will make in this talk:

E >T and moreover In (E / T) >1
as K1 and moreover asIln(E/T) <1

mean free path for elastic collisions << L << formation length



The puzzle

Treating In(E/T) >> 1, and trying to analyze the problem to leading order in inverse
powers of this logarithm:

Harmonic oscillator (HO) approximation [BDMPS]

Consider only fypical scattering events
(no rare, large-than-usual scatterings)

single scattering (N=1) approximation [GLV, Salgado & Wiedemann]

Consider only one scattering from medium
(both typical and rare deflection angles)

Naively, this might seem weird given my assumption that

L > mean free path for elastic collisions



The puzzle: energy loss

Treating In(E/T) >> 1, and trying to analyze the problem to leading order in inverse
powers of this logarithm:

Harmonic oscillator (HO) approximation [BDMPS]

1L
(AE) ~ #a°nL?In (q_2>

mu

single scattering (N=1) approximation [GLV, Salgado & Wiedemann]

(AE) ~ #a°nL?In ( " )

2
mDL



The puzzle: spectrum

al [dI

A spectrum) = — — vs. L for fixed o
(A sp ) dw dw] vac
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harmonic oscillator (HO) single scattering (N=1)
approximation [BDMPS] approximation

Which approximation, if either, is right (at leading log order)?

[ Zakharov 2001, BDMS 2001, Peigne & Smilga 2008, Arnold 2009 ]



The puzzle: spectrum
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A spectrum) = — — vs. L for fixed ®
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harmonic oscillator (HO) single scattering (N=1)
approximation [BDMPS] approximation

Which approximation, if either, is right (at leading log order)?

Answer: They're both important.
[ Zakharov 2001, BDMS 2001, Peigne & Smilga 2008, Arnold 2009 ]



Scattering probabilities

Q. = nettransverse momentum transfer in distance L

net deflection angle ~ Q /E

A 2 2
Q1 ~ 4L M
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Return to thin media puzzle

Typical scatterings

Probability of underlying scattering event large but

relatively small deflection angle — large formation time
— small medium effect on brem

medium vacuum
ﬂrw; - &, = small
Rare scatterings
Probability of underlying scattering event small but

relatively large deflection angle — small formation time
— significant medium effect on brem

— &‘



Return to thin media puzzle

Typical scatterings

Probability of underlying scattering event large but

relatively small deflection angle — large formation time
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medium vacuum
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Rare scatterings
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relatively large deflection angle — small formation time
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Which peak wins depends on frequency o of gluon.
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LPM suppression



A (spectrum) vs. L for fixed ®
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Total AE as function medium size L
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LLessons

The LPM effect is easy to understand qualitatively.

When computing average quantities like <AE>, the average is sometimes dominated
by extremely rare events and so is not characteristic of what happens in most
events.






QL =

Scattering probabilities

net transverse momentum transfer in distance L

net deflection angle ~ Q /E
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g in weakly-coupled plasmas

formation time
_&) depends on collinearity of brem
depends on transverse momentum transfer Q,

2

QJ_ =qlL X o q* forlarge q,

d — 2 dle) 2 __ squared transverse momentum
q.L d2q, qd. transfer per unit length

UV log divergent (leading order)

Qtypical — (j(UV CUtOHQ — typical Q%_ — QtypicalL)



g in weakly-coupled plasmas

formation time
_&) depends on collinearity of brem
depends on transverse momentum transfer Q,

2 A
QJ_ =qlL X o q* forlarge q,

d — d2 drel 2 _ squared transverse momentum
q. d, transfer per unit length

UV log divergent (leading order)
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Leading-order-in-a_result for UV-regulated ghat

Pure gluon gas, for example:

R A (4 9g*T
i) = [¢) 4 ¢@) ke | 2
= 2Tz Ve

A =UV cut-off on gq,

0O
In [ (k - 1) '] [Arnold & Xiao(2008)]

I+ Z I3

k=1

WARNING: Corrections which are formally higher-order in coupling, of order
myl T = O(g). are of order 100% for realistic couplings. [Caron-Huot (2008)]
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