Peter Arnold

Gluon bremsstrahlung in QCD plasmas at very high energy

Why interesting?

Perturbatively, gluon bremsstrahlung (and related process of pair production) dominates energy loss of high energy particles (E >> T) traversing a quark-gluon plasma.

Calculations complicated by the **Landau-Pomeranchuk-Migdal (LPM)** effect.

The LPM Effect

<u>Naively</u>

brem rate ~ $n\sigma v$ ~ (density of scatterers) \times

Problem

At very high energy,

probabilities of brem from successive scatterings no longer independent;

brem from several successive (small angle) collisions not very different from brem from one collision.

Result: a reduction of the naive brem rate.

I. Review of the LPM effect

QED 1953-56, QCD 1996-98

II. A theoretical puzzle

III. Its resolution

The LPM Effect (QED)

Warm-up: Recall that light cannot resolve details smaller than its wavelength.

[Photon emission from different scatterings have same phase \rightarrow coherent.]

Now: Just Lorentz boost above picture by a lot!

The LPM Effect (QED)

Note: (1) **bigger** E requires bigger boost \rightarrow more time dialation \rightarrow **longer formation length**

(2) big boost \rightarrow this process is very collinear.

An alternative picture

Are these two possibilities in phase? Do they interfere coherently?

The important point:

The more collinear the underlying scattering, the longer the formation time.

Note: the formation length

depends on the net angular deflection during the formation length, which *depends on* the formation length

[Self-consistency \rightarrow standard parametric formulas for formation length.]

The LPM Effect (QCD)

There is a qualitative difference for **soft** bremsstrahlung.:

QED

Softer brem photon

- \rightarrow longer wavelength
 - \rightarrow less resolution
 - → more LPM suppression

QCD

Unlike a brem photon, a brem gluon can easily scatter from the medium.

Softer brem gluon

- \rightarrow easier for brem gluon to scatter
- \rightarrow less collinearity
- → less LPM suppressio¬

Upshot: Soft brem more important in QCD than in QED (for high-*E* particles in a medium)

Naively: medium effect grows linearly with *L*..

For small enough L, instead grows like $L^2 \ln L$ because of the LPM effect. [BDMPS 1996]

Naively: medium effect grows linearly with *L*..

For small enough L, instead grows like $L^2 \ln L$ because of the LPM effect. [BDMPS 1996]

Assumptions I will make in this talk:

$$E\gg T$$
 and moreover $\ln{(E/T)}\gg 1$

$$lpha_s \ll 1$$
 and moreover $lpha_{
m s} \ln{(E/T)} \ll 1$

mean free path for elastic collisions $\ll L \ll \,\,$ formation length

The puzzle

Treating ln(E/T) >> 1, and trying to analyze the problem to leading order in inverse powers of this logarithm:

Harmonic oscillator (HO) approximation [BDMPS]

Consider only *typical* scattering events (no rare, large-than-usual scatterings)

<u>single scattering (*N*=1) approximation</u> [GLV, Salgado & Wiedemann]

Consider only *one* scattering from medium (both typical and rare deflection angles)

Naively, this might seem weird given my assumption that

 $L\gg$ mean free path for elastic collisions

The puzzle: energy loss

Treating ln(E/T) >> 1, and trying to analyze the problem to leading order in inverse powers of this logarithm:

Harmonic oscillator (HO) approximation [BDMPS]

$$\langle \Delta E \rangle \simeq \# \alpha^3 n L^2 \ln \left(\frac{\hat{q} L}{m_{\rm D}^2} \right)$$

<u>single scattering (*N*=1) approximation</u> [GLV, Salgado & Wiedemann]

$$\langle \Delta E \rangle \simeq \# \alpha^3 n L^2 \ln \left(\frac{E}{m_{\rm D}^2 L} \right)$$

The puzzle: spectrum

$$\langle \Delta \operatorname{spectrum} \rangle = \frac{dI}{d\omega} - \left[\frac{dI}{d\omega} \right]_{\text{vac}}$$
 vs. L for fixed ω

Which approximation, if either, is right (at leading log order)?

The puzzle: spectrum

$$\langle \Delta \operatorname{spectrum} \rangle = \frac{dI}{d\omega} - \left[\frac{dI}{d\omega} \right]_{\text{vac}}$$
 vs. L for fixed ω

Which approximation, if either, is right (at leading log order)?

Answer: They're both important.

[Zakharov 2001, BDMS 2001, Peigne & Smilga 2008, Arnold 2009]

Scattering probabilities

 $Q_{\perp} \equiv \;\;$ net transverse momentum transfer in distance L net deflection angle $\; \sim Q_{\perp}/E$

Return to thin media puzzle

Typical scatterings

Probability of underlying scattering event <u>large</u> but

relatively small deflection angle \rightarrow large formation time

→ small medium effect on brem

Rare scatterings

Probability of underlying scattering event \underline{small} but relatively large deflection angle \rightarrow small formation time \rightarrow significant medium effect on brem

Return to thin media puzzle

Typical scatterings

Probability of underlying scattering event <u>large</u> but

relatively small deflection angle \rightarrow large formation time

→ small medium effect on brem

Rare scatterings

Probability of underlying scattering event \underline{small} but relatively large deflection angle \rightarrow small formation time \rightarrow significant medium effect on brem

Which peak wins depends on frequency ω of gluon.

Δ (spectrum) vs. *L* for fixed ω

Total ΔE as function medium size L

$$L_{\infty} \equiv \sqrt{rac{E}{\hat{q}}} \,$$
 = formation time in infinite medium

Lessons

The LPM effect is easy to understand qualitatively.

When computing average quantities like $<\Delta E>$, the average is sometimes dominated by *extremely rare* events and so is not characteristic of what happens in most events.

Scattering probabilities

 $Q_{\perp} \equiv \;\;$ net transverse momentum transfer in distance L net deflection angle $\; \sim Q_{\perp}/E$

\hat{q} in weakly-coupled plasmas

formation time

depends on collinearity of brem depends on transverse momentum transfer Q_{\perp}

$$egin{align*} oldsymbol{Q}_{\perp}^2 &= \hat{oldsymbol{q}} L & & \propto q_{\perp}^{-4} ext{ for large } q_{\perp} \ oldsymbol{\hat{q}} &= \int d^2 q_{\perp} \, rac{d \Gamma_{ ext{el}}}{d^2 q_{\perp}} \, q_{\perp}^2 = & ext{squared transverse momentum transfer per unit length} \ &= & ext{UV log divergent (leading order)} \ \end{aligned}$$

$$\hat{q}_{\text{typical}} = \hat{q}(\text{UV cutoff}^2 = \text{typical } Q_{\perp}^2 = \hat{q}_{\text{typical}}L)$$

\hat{q} in weakly-coupled plasmas

formation time

depends on collinearity of brem depends on transverse momentum transfer Q_{\perp}

$$egin{align*} oldsymbol{Q}_{\perp}^2 &= \hat{oldsymbol{q}} L & & \propto q_{\perp}^{-4} \; ext{for large} \, q_{\perp} \ & \hat{oldsymbol{q}} &= \int oldsymbol{d}^2 q_{\perp} \; rac{d \Gamma_{ ext{el}}}{d^2 q_{\perp}} \, q_{\perp}^2 = \; ext{squared transverse momentum transfer per unit length} \ &= \; ext{UV log divergent (leading order)} \ \end{aligned}$$

$$p$$
 $p+q$ $d\Gamma_{
m el} \over d^2q_\perp \sim \int dq_z \int d^3p_2 rac{d\sigma_{
m el}}{d^3q} f(ec{p}_2) [1 \pm f(ec{p}_2 - ec{q})]$

<u>Leading-order-in-α</u> result for UV-regulated qhat

Pure gluon gas, for example:

$$\hat{\mathbf{q}}(\mathbf{\Lambda}) = \left[\zeta(3) \ln \frac{\mathbf{\Lambda}}{\mu} + \zeta(2) \ln \frac{\mu}{m_{\rm d}} - \sigma_{+} \right] \frac{9g^{4}T^{3}}{\pi^{3}}$$

$$\mu \equiv 2Te^{\frac{1}{2} - \gamma_{\rm E}}$$

$$\sigma_{+} \equiv \sum_{k=0}^{\infty} \frac{\ln[(k-1)!]}{k^3}$$

 Λ = UV cut-off on q_{\perp}

[Arnold & Xiao(2008)]

WARNING: Corrections which are formally higher-order in coupling, of order $m_d/T = O(g)$. are of order 100% for realistic couplings. [Caron-Huot (2008)]