# Looking for the QCD critical point on the lattice

#### Philippe de Forcrand ETH Zürich and CERN



Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Intro T<sub>c</sub> CEP Concl.

# The minimum phase diagram of QCD



- Dictated by perturbation theory at large T or large  $\mu$
- Phase transitions or crossovers ?

Intro T<sub>c</sub> CEP Concl.

# The minimum phase diagram of QCD



- Dictated by perturbation theory at large T or large  $\mu$
- Phase transitions or crossovers ?
- Crossover at  $(\mu = 0, T_c)$ , first-order at small  $T \rightarrow$  QCD critical point

## The sign problem

• Integrate over fermions: det $(\not D + m + \mu \gamma_0)$  complex unless  $\mu = 0$  or  $\mu = i\mu_i$ 

 $\rightarrow$  standard importance sampling  $\Leftrightarrow \langle \text{Re(baryon density)} \rangle = 0$ 

## The sign problem

• Integrate over fermions: det( $\not P + m + \mu \gamma_0$ ) complex unless  $\mu = 0$  or  $\mu = i \mu_i$ 

 $\rightarrow$  standard importance sampling  $\Leftrightarrow \langle \text{Re(baryon density)} \rangle = 0$ 

- Reweighting: simulate theory with no sign pb., eg.  $|\det(\mu)|$ 
  - reweight each measurement with  $\rho(U) = \frac{\det(U,\mu)}{|\det(U,\mu)|}$  complex phase
  - av. "sign"  $\langle \rho(U) \rangle = \frac{Z(\mu, \det)}{Z(\mu, \det)} \sim \exp(-\frac{V \Delta f(\mu)}{T}) \rightarrow \text{large } V$  ?, large  $\mu$  ?
  - 1. maintain statistical accuracy on  $\langle \rho \rangle :$  sign pb.
  - **2.** ensure that  $Z(\mu, det)$  is properly sampled: **overlap** pb.

**1** and **2** require statistics  $\propto \exp(+V)$ 

# The sign problem

• Integrate over fermions: det $(\not \! D + m + \mu \gamma_0)$  complex unless  $\mu = 0$  or  $\mu = i \mu_i$ 

 $\rightarrow$  standard importance sampling  $\Leftrightarrow \langle \text{Re(baryon density)} \rangle = 0$ 

- Reweighting: simulate theory with no sign pb., eg.  $|\det(\mu)|$ 
  - reweight each measurement with  $\rho(U) = \frac{\det(U,\mu)}{|\det(U,\mu)|}$  complex phase
  - av. "sign"  $\langle \rho(U) \rangle = \frac{Z(\mu, \det)}{Z(\mu, |\det|)} \sim \exp(-V \frac{\Delta f(\mu)}{T}) \rightarrow \text{large } V$  ?, large  $\mu$  ?
  - 1. maintain statistical accuracy on  $\langle \rho \rangle :$  sign pb.
  - **2.** ensure that  $Z(\mu, det)$  is properly sampled: **overlap** pb.

**1** and **2** require statistics  $\propto \exp(+V)$ 

• Measure derivatives w.r.t.  $\mu$  at  $\mu = 0$ :  $\langle W(\mu) \rangle = \langle W(\mu = 0) \rangle + \sum_k c_k \left(\frac{\mu}{\pi T}\right)^k$ 

- directly at  $\mu = 0$  MILC, TARO, Bielefeld-Swansea, Gavai-Gupta,...
- by fitting polynomial to  $\mu = i\mu_i$  results D'Elia-Lombardo, PdF-Philipsen,...

Controlled thermodynamics and continuum limits  $\Rightarrow$  **derivatives** only

Intro T<sub>c</sub> CEP Concl.

#### The good news: curvature of the pseudo-critical line

All with  $N_f = 4$  staggered fermions,  $am_q = 0.05, N_t = 4$  ( $a \sim 0.3$  fm)



Intro T<sub>c</sub> CEP Concl.

#### The good news: curvature of the pseudo-critical line

•  $T_c(\mu)$  simpler/more precise by analytic continuation of  $T_c(i\mu_i)$ : determine  $T_c(\mu = i\mu_i)$  and fit results with polynomial

$$\frac{T_c(\mu)}{T_c(\mu=0)} = 1 - \sum_{k=1} \mathbf{t_{2k}} \left(\frac{\mu}{\pi T}\right)^{2k}$$

For  $N_t = 4$ : curvature  $t_2(N_f, m_q)$  varies from  $\sim 0.3$  to  $\sim 1$  Schmidt 06

- Indications (PdF& OP  $N_t = 6$ ; Fodor et al. LAT08):  $t_2$  decreases as  $a \rightarrow 0$
- Extrapolation  $m_q \rightarrow m_{\text{phys}}, a \rightarrow 0$  feasible G. Endrodi LAT09

Intro Tc CEP Concl.

## Why is curvature of pseudo-critical line important?



IF  $T_c(\mu)$  really flatter than freeze-out curve ( $a \rightarrow 0$ : factor  $\sim 2-6$  in  $\frac{d^2 T_c}{d\mu^2}\Big|_{\mu=0}$ ?)  $\implies$  exp. signal from critical pt. modified/washed out by evolution until freeze-out

#### The bad news: locating the critical point



#### M. Stephanov, hep-lat/0701002

#### • Challenging task:

detect divergent correlation length (2nd order) vs finite but large (crossover, 1rst order) on small lattice

Mission impossible?

# 0. The ultimate reweighting

Fodor & Katz: hep-lat/0402006 (~ physical quark masses)



Strategy: reweight from  $(\mu = 0, T_c)$  along pseudo-critical line

#### Legitimate concerns:

- Discretization error?  $N_t = 4 \implies a \sim 0.3$  fm
- Abrupt qualitative change near  $\mu_E$ :

abrupt change of physics or breakdown of algorithm (Splittorff)?

 $\rightarrow$  repeat with conservative approach (derivative)

# Intro Tc CEP Concl. Reweighting Taylor Crit. surf. 1. Taylor expansion

• Reweighting gives exact  $\mu$  dependence, **BUT** limited to small  $V, \mu$ Error non-Gaussian, analysis subtle  $\rightarrow$  breakdown may go unnoticed (Glasgow meth)

• Instead, obtain reliable  $V \rightarrow \infty$  behaviour of Taylor coefficients:

$$P(T,\mu) = \underbrace{P(T,\mu=0)}_{\text{indep. calc.}} + \Delta P(T,\mu), \qquad \underbrace{\frac{\Delta P(T,\mu)}{T^4} = \sum_{k=1} c_{2k}(T) \left(\frac{\mu}{T}\right)^{2k}}_{\text{indep. calc.}}$$
$$c_{2k} = \langle \text{Tr}(\text{ degree } 2k \text{ polynomial in } \not D^{-1}, \frac{\partial \not D}{\partial \mu}) \rangle_{\mu=0} \rightarrow \text{vanilla HMC}$$

- From  $\{c_{2k}\}$ , obtain all thermodynamic info: EOS and  $T_c(\mu)$  and crit. pt. and ...
- As  $\frac{\mu}{T}$  increases, need higher-order  $c_{2k}$ 's to control truncation error

# Intro T\_c CEP Concl. Reweighting Taylor Crit. surf. 1. Taylor expansion

• Reweighting gives exact  $\mu$  dependence, **BUT** limited to small  $V, \mu$ Error non-Gaussian, analysis subtle  $\rightarrow$  breakdown may go unnoticed (Glasgow meth)

• Instead, obtain reliable  $V \rightarrow \infty$  behaviour of Taylor coefficients:



# Intro T<sub>c</sub> CEP Concl. Reweighting Taylor Crit. surf. 1. Taylor expansion

• Reweighting gives exact  $\mu$  dependence, **BUT** limited to small  $V, \mu$ Error non-Gaussian, analysis subtle  $\rightarrow$  breakdown may go unnoticed (Glasgow meth)

• Instead, obtain reliable  $V \rightarrow \infty$  behaviour of Taylor coefficients:

$$P(T,\mu) = \underbrace{P(T,\mu=0)}_{\text{indep. calc.}} + \Delta P(T,\mu), \qquad \boxed{\frac{\Delta P(T,\mu)}{T^4} = \sum_{k=1} c_{2k}(T) \left(\frac{\mu}{T}\right)^{2k}}_{\text{indep. calc.}}$$
$$c_{2k} = \langle \text{Tr}(\text{ degree } 2k \text{ polynomial in } \not D^{-1}, \frac{\partial \not D}{\partial \mu}) \rangle_{\mu=0} \rightarrow \text{vanilla HMC}$$

- From  $\{c_{2k}\}$ , obtain all thermodynamic info: EOS and  $T_c(\mu)$  and crit. pt. and ...
- As  $\frac{\mu}{T}$  increases, need higher-order  $c_{2k}$ 's to control truncation error
- Higher order  $k \Rightarrow \text{Tr}(\not D^{-2k}, ..)$ , ie. more noise vectors, more cancellations..
- ..and also larger volumes  $\rightarrow$  work  $\sim$  36<sup>k</sup> (Karsch et al.) at least
- Current best: N<sub>t</sub> = 8,6th order HOTQCD, N<sub>t</sub> = 6,8th order Gavai & Gupta, 0806.2233

$$\frac{P}{T^4} = \sum_{n=0}^{\infty} c_{2n}(T) \left(\frac{\mu}{T}\right)^{2n}$$
Singularity  $(\mu_E, T_E) \Rightarrow \boxed{\frac{\mu_E}{T_E} = \lim_{n \to \infty} \sqrt{\left|\frac{c_{2n}}{c_{2n+2}}\right|(T_E)}}_{Similar, for \frac{\chi_q}{T^2}: Gavai \& Gupta$ 

$$\frac{\mu_E}{T_E} < 0.6"$$

$$\frac{P}{T^4} = \sum_{n=0}^{\infty} c_{2n}(T) \left(\frac{\mu}{T}\right)^{2n}$$
Singularity  $(\mu_E, T_E) \Rightarrow \boxed{\frac{\mu_E}{T_E} = \lim_{n \to \infty} \sqrt{\left|\frac{c_{2n}}{c_{2n+2}}\right|} (T_E)}_{T_E}$ 
Similar, for  $\frac{\chi_q}{T_2}$ : Gavai & Gupta  
" $\mu_E/T_E < 0.6$ "
Critique: • Need  $n \to \infty$ , not  $n = 1, 2, 3;$ ,  $\sqrt{\left|\frac{c_2}{c_4}\right|}$  is not a lower or upper bound  
• Robust criterion to choose  $T_E$ ?
• Smallest convergence radius is NOT CEP Stephanov hep-lat/0603014

$$\frac{P}{T^4} = \sum_{n=0}^{\infty} c_{2n}(T) \left(\frac{\mu}{T}\right)^{2n}$$
Singularity  $(\mu_E, T_E) \Rightarrow \boxed{\frac{\mu_E}{T_E} = \lim_{n \to \infty} \sqrt{\left|\frac{c_{2n}}{c_{2n+2}}\right|(T_E)}}_{T_E}$ 
Similar, for  $\frac{\chi_q}{T^2}$ : Gavai & Gupta  
" $\mu_E/T_E < 0.6$ "
Critique: • Need  $n \to \infty$ , not  $n = 1, 2, 3;$   $\sqrt{\left|\frac{c_2}{c_4}\right|}$  is not a lower or upper bound  
• Robust criterion to choose  $T_E$ ?
Stephapoy beg-lat/0603014

Remember Fodor & Katz:



$$\frac{P}{T^4} = \sum_{n=0}^{\infty} c_{2n}(T) \left(\frac{\mu}{T}\right)^{2n}$$
Singularity  $(\mu_E, T_E) \Rightarrow \boxed{\frac{\mu_E}{T_E} = \lim_{n \to \infty} \sqrt{\left|\frac{c_{2n}}{c_{2n+2}}\right|(T_E)}}_{\text{Similar, for } \frac{\chi_q}{T^2}: \text{ Gavai \& Gupta}}$ 
Similar, for  $\frac{\chi_q}{T^2}: \text{ Gavai \& Gupta}$ 

$$\overset{\mu_E}{} / T_E < 0.6^{\circ}$$
Critique: • Need  $n \to \infty$ , not  $n = 1, 2, 3; \sqrt{\left|\frac{c_2}{c_4}\right|}$  is not a lower or upper bound  
• Robust criterion to choose  $T_E$ ?

• Smallest convergence radius is NOT CEP Stephanov hep-lat/0603014

Remember Fodor & Katz: need high-order derivatives



$$\frac{P}{T^4} = \sum_{n=0}^{\infty} c_{2n}(T) \left(\frac{\mu}{T}\right)^{2n}$$
Singularity  $(\mu_E, T_E) \Rightarrow \boxed{\frac{\mu_E}{T_E} = \lim_{n \to \infty} \sqrt{\left|\frac{c_{2n}}{c_{2n+2}}\right|(T_E)}}_{T_E}$ 
Similar, for  $\frac{\chi_q}{T^2}$ : Gavai & Gupta  
" $\mu_E/T_E < 0.6$ "
Critique: • Need  $n \to \infty$ , not  $n = 1, 2, 3$ ;  $\sqrt{\left|\frac{c_2}{c_4}\right|}$  is not a lower or upper bound  
• Robust criterion to choose  $T_E$ ?
Can systematic error  
be controlled ?
First goal: discriminate

Ph. de Forcrand

between CEP and no CEP

EMMI 2009, St. Goar

Crit. Pt.

0

0.05

0.1

μ

0.15

0.2

Intro T<sub>c</sub> CEP Concl.

Reweighting

Taylor Crit. surf.

#### Case study on toy model, with Roger Herrigel

- Idea: study Taylor coeffs of  $\frac{\Delta P}{T^4} \left(\frac{\mu}{T}\right) \equiv \Delta \hat{P}(\hat{\mu})$ and "effective radius of convergence" in controlled situation
- Ansatz:  $\Delta \hat{P}(\hat{\mu}) = \frac{\Delta \hat{P}_{SB}}{2} + \log(\cosh(\lambda(\hat{T}-1) + \frac{\Delta \hat{P}_{SB}}{2})) \log(\cosh(\lambda(\hat{T}-1)))$

Why? - correct limits high-T, low-T

- $c_2 \approx (1 + \tanh(\lambda(\hat{T} 1)))$ , sigmoid, no phase trans., no CEP
- single parameter  $\lambda$  controls width of crossover (rescaling of  $\hat{T}$ )
- no singularity on real  $\hat{\mu}$  axis  $\rightarrow$  test for spurious signals



Ph. de Forcrand





Intro T<sub>c</sub> CEP Concl.

Reweighting Taylor Crit. surf.

## Toy ansatz: compare with Bielefeld et al.



Oscillatory pattern  $\rightarrow c_k = 0$  at lower  $\hat{T}$  as *k* increases



• Quark susceptibility rises, even without phase transition



- Quark susceptibility rises, even without phase transition
- Truncation may increase susceptibility



• Qualitative agreement below  $T_c$  although HRG not built-in



IF we know that there is a crit. point: how to choose *T<sub>E</sub>*?? BJS et al.
Can we predict whether or not there is a critical point ??

## A safer strategy ?



#### A safer strategy ?



Two strategies:

**1** follow vertical line:  $m = m_{phys}$ , turn on  $\mu \rightarrow$  radius of convergence? **2** follow critical surface:  $m = m_{crit}(\mu)$  Intro T<sub>c</sub> CEP Concl.

Reweighting Taylor Crit. surf.

#### Strategy 2: follow critical surface

## PdF & O. Philipsen



Ph. de Forcrand

EMMI 2009, St. Goar

Crit. Pt.





# Consistency with effective models?

- Restoration of  $U_A(1)$  anomaly favors first-order finite T transition
  - Chandrasekharan & Mehta

• Progressive restoration of  $U_A(1)$  symmetry at finite density?

Intro T<sub>c</sub> CEP Concl.

NJL + [det  $\bar{q}_i(1 - \gamma_5)q_j$  + h.c.] × exp $(-\mu^2/\mu_0^2)$  Chen et al. 0901.2407



- crit. surf. ends when  $T_c = 0$
- $\rightarrow$  still no chiral critical point!



Reweighting Taylor Crit. surf.

Same pattern with linear sigma model + fluctuations

Bowman & Kapusta 0810.0042

# Towards the continuum limit

• Critical line recedes away from physical point towards origin



IF curvature of critical surface unchanged...



# Towards the continuum limit

Critical line recedes away from physical point towards origin



Crit. surface starts almost "vertical" → need higher order to decide on crit. pt.

Ph. de Forcrand

#### Standard scenario

#### Exotic scenario



Reweighting Taylor Crit. surf.

#### Arguments for standard wisdom?

• O(4) transition for 2 massless flavors Pisarski & Wilczek  $\Rightarrow$  tricritical points ( $m_{u,d} = 0, m_s = \infty, \mu = \mu^*$ ) and ( $m_{u,d} = 0, m_s = m_s^*, \mu = 0$ )



### Arguments for standard wisdom?



# Arguments for standard wisdom?



#### Critique:

• O(4) if strong enough  $U_A(1)$  anomaly, otherwise first-order

Chandrasekharan & Mehta

# Arguments for standard wisdom?



#### Critique:

• O(4) if strong enough  $U_A(1)$  anomaly, otherwise first-order

Chandrasekharan & Mehta

•  $N_f = 2$  and  $N_f = 2 + 1$  need not be connected  $\rightarrow$  study  $N_f = 2$  crit. surf.

#### Conclusions

#### Confucius: Real knowledge is to know the extent of one's ignorance

• 
$$\frac{m_c(\mu)}{m_c(0)} = 1 + c_1 \left(\frac{\mu}{\pi T}\right)^2 + ...:$$
 can control systematics  
Non-standard scenario  $c_1 < 0$  for  $N_t = 4$ 

•  $a \rightarrow 0$ : critical surface far from physical point  $\implies$  need  $c_1 > 0$  and large for  $\frac{\mu_E}{T_r} \lesssim 1$ , disfavored by data



## Backup: Gavai & Gupta's critical point

"We find the radius of convergence of the series at various temperatures, and bound the location of the QCD critical point to be  $T_E/T_c \approx 0.94$  and  $\mu_E/T < 0.6$ "

• Arbitrariness in definition of "effective radius of convergence"

$$\frac{\mu_E}{T_E} = \lim_{n \to \infty} \sqrt{\left| \frac{c_{2n}}{c_{2n+2}} \right| (T_E) \operatorname{versus} \frac{\chi_q}{T^2}} = \sum_{n=1}^{\infty} \frac{2n(2n-1)}{2n} c_{2n} \left( \frac{\mu}{T} \right)^{2n-2}$$

$$\rightarrow \frac{\mu_E}{T_E} = \lim_{n \to \infty} \sqrt{\left| \frac{2n(2n-1)c_{2n}}{(2n+2)(2n+1)c_{2n+2}} \right|} \qquad n = 1 \rightarrow \operatorname{factor} \frac{1}{\sqrt{6}}$$

• Criterion for  $T_E$ 

- Consistency of results with toy model having no critical point
- Endrodi, Fodor & Katz:

peaks of all susceptibilities decrease as  $\mu$  increases