Quark and gluon properties in dense 2-colour QCD

Jon-Ivar Skullerud

NUI Maynooth

Quarks, hadrons and the phase diagram of QCD St. Goar, 1 September 2009

Outline

Background QC_2D vs QCD

Formalism

Tensor structures Lattice formulation

Results

Bulk thermodynamics Gluon propagator results Quark propagator results

QC₂D vs QCD

Background

- A plethora of phases at high μ , low T
- Based on models and perturbation theory
- Details depend on diquark gaps and strange quark mass
- Diquark condensation a generic feature

QC₂D vs QCD

Lattice simulations?

A non-perturbative, first-principles approach is needed!

QC₂D vs QC

Lattice simulations?

A non-perturbative, first-principles approach is needed!

But QCD at $\mu \neq 0$ has a sign problem:

 $\gamma_5 \mathcal{M}(\mu) \gamma_5 = \mathcal{M}^{\dagger}(-\mu) \implies \det \mathcal{M} \text{ may be complex}$

So standard Monte Carlo importance sampling can not be used!

QC₂D vs QCI

Lattice simulations?

A non-perturbative, first-principles approach is needed!

But QCD at $\mu \neq 0$ has a sign problem:

 $\gamma_5 \mathcal{M}(\mu) \gamma_5 = \mathcal{M}^{\dagger}(-\mu) \implies \det \mathcal{M} \text{ may be complex}$

So standard Monte Carlo importance sampling can not be used!

Indirect approach

Study QCD-like theories without a sign problem

- Generic features of strongly interacting systems at $\mu \neq 0$
- Check on model calculations

QC₂D vs QCE

Diquark condensation

Diquarks are colour singlets in QC_2D

- \rightarrow superfluidity rather than colour superconductivity
- \rightarrow exact Goldstone mode from breaking of U(1)_B symmetry

QC₂D vs QCD

Diquark condensation

Diquarks are colour singlets in QC_2D

- \rightarrow superfluidity rather than colour superconductivity
- \rightarrow exact Goldstone mode from breaking of U(1)_B symmetry

Bose–Einstein Condensation:

Condensation of tightly bound diquarks (Goldstone baryons) ↔ Chiral perturbation theory

$$\langle \psi \psi
angle \propto \sqrt{1-(\mu/\mu_o)^4}$$

QC₂D vs QCD

Diquark condensation

Diquarks are colour singlets in QC_2D

- \rightarrow superfluidity rather than colour superconductivity
- \rightarrow exact Goldstone mode from breaking of U(1)_B symmetry

Bose–Einstein Condensation:

Condensation of tightly bound diquarks (Goldstone baryons) ↔ Chiral perturbation theory

$$\langle \psi \psi
angle \propto \sqrt{1-(\mu/\mu_o)^4}$$

Bardeen–Cooper–Schrieffer:

Pairing of quarks near the Fermi surface

 $\langle \psi \psi \rangle \propto \Delta \mu^2$

QC₂D vs QCD

QC_2D vs QCD— Issues of interest

Gluodynamics — SU(2) and SU(3) very similar?

- Deconfinement at high density effects on gluon propagator?
- Gap equation with effective or one-gluon interaction used to determine superconducting gap → more realistic input?
- Static magnetic gluon: unscreened at all orders in perturbation theory!

QC_2D vs QCD— Issues of interest

Gluodynamics — SU(2) and SU(3) very similar?

- Deconfinement at high density effects on gluon propagator?
- Gap equation with effective or one-gluon interaction used to determine superconducting gap → more realistic input?
- Static magnetic gluon: unscreened at all orders in perturbation theory!

Quark propagator

- Details of phase diagram depend critically on the effective quark mass in the medium.
- Location of Fermi surface?
- Direct determination of diquark gap, size of Cooper pairs?

Tensor structure in medium

The medium breaks Lorentz (Euclidean) symmetry to O(3) $\implies 1 \rightarrow 2$ scalar functions in gluon, 2 \rightarrow 4 in quark:

$$D_{\mu\nu}(\overrightarrow{q}, q_t) = P_{\mu\nu}^T D_M(\overrightarrow{q}^2, q_t^2) + P_{\mu\nu}^E D_E(\overrightarrow{q}^2, q_t^2) + \xi \frac{q_\mu q_\nu}{q^4}$$

$$S^{-1}(\overrightarrow{p}, \widetilde{\omega}) = i \overrightarrow{p} A(\overrightarrow{p}^2, \widetilde{\omega}^2) + i \gamma_4 \widetilde{\omega} C(\overrightarrow{p}^2, \widetilde{\omega}^2) + B(\overrightarrow{p}^2, \widetilde{\omega}^2)$$

$$+ i \gamma_4 \overrightarrow{p} D(\overrightarrow{p}^2, \widetilde{\omega}^2)$$

$$S(\overrightarrow{p}, \widetilde{\omega}) = i \overrightarrow{p} S_a + i \gamma_4 \widetilde{\omega} S_c + S_b + i \gamma_4 \overrightarrow{p} S_d$$
where $\widetilde{\omega} \equiv p_4 - i \mu$.

Tensor structures Lattice formulation

Gor'kov formalism

Quarks and antiquarks are in the same representation. Construct Gor'kov spinor

$$\Psi = \begin{pmatrix} \psi \\ \overline{\psi}^{T} \end{pmatrix} \implies \langle \Psi(x)\overline{\Psi}(y) \rangle \equiv \mathcal{G}(x,y) = \begin{pmatrix} S_{N} & -S_{A} \\ \overline{S}_{A} & \overline{S}_{N} \end{pmatrix}$$

Tensor structures Lattice formulation

Gor'kov formalism

Quarks and antiquarks are in the same representation. Construct Gor'kov spinor

$$\Psi = \begin{pmatrix} \psi \\ \overline{\psi}^{T} \end{pmatrix} \implies \langle \Psi(x)\overline{\Psi}(y) \rangle \equiv \mathcal{G}(x,y) = \begin{pmatrix} S_{N} & -S_{A} \\ \overline{S}_{A} & \overline{S}_{N} \end{pmatrix}$$

 S_A contains information about anomalous propagation Self-energies are diquark gaps Δ (superfluid/superconducting)

Tensor structures Lattice formulation

Gor'kov formalism

Quarks and antiquarks are in the same representation. Construct Gor'kov spinor

$$\Psi = \begin{pmatrix} \psi \\ \overline{\psi}^{T} \end{pmatrix} \implies \langle \Psi(x)\overline{\Psi}(y) \rangle \equiv \mathcal{G}(x,y) = \begin{pmatrix} S_{N} & -S_{A} \\ \overline{S}_{A} & \overline{S}_{N} \end{pmatrix}$$

 S_A contains information about anomalous propagation Self-energies are diquark gaps Δ (superfluid/superconducting) General tensor structure is the same as for normal components.

Gor'kov formalism

Quarks and antiquarks are in the same representation. Construct Gor'kov spinor

$$\Psi = \begin{pmatrix} \psi \\ \overline{\psi}^{T} \end{pmatrix} \implies \langle \Psi(x)\overline{\Psi}(y) \rangle \equiv \mathcal{G}(x,y) = \begin{pmatrix} S_{N} & -S_{A} \\ \overline{S}_{A} & \overline{S}_{N} \end{pmatrix}$$

 S_A contains information about anomalous propagation Self-energies are diquark gaps Δ (superfluid/superconducting) General tensor structure is the same as for normal components.

Symmetries

From isospin and charge conjugation symmetry it follows that

$$\overline{S}_N(x,y) = -S_N(y,x)^T$$
, $S_A(x,y) = S_A(y,x)^T$

Tensor structures Lattice formulation

Fermi surface and Cooper pairs

Fermi surface

In a Fermi liquid the Fermi surface is given by

$$\det S^{-1}(\overrightarrow{p_F},p_4=0)=0 \quad \Longleftrightarrow \quad \overrightarrow{p}^2 A^2 + \widetilde{\omega}^2 C^2 + B^2 = 0$$

Pole in propagator

Tensor structures Lattice formulation

Fermi surface and Cooper pairs

Fermi surface

In a Fermi liquid the Fermi surface is given by

$$\det S^{-1}(\overrightarrow{p_F},p_4=0)=0\quad\Longleftrightarrow\quad\overrightarrow{p}^2A^2+\widetilde{\omega}^2C^2+B^2=0$$

Pole in propagator In gapped phase: zero crossing!

Tensor structures Lattice formulation

Fermi surface and Cooper pairs

Fermi surface

In a Fermi liquid the Fermi surface is given by

$$\det S^{-1}(\overrightarrow{p_F},p_4=0)=0\quad\Longleftrightarrow\quad\overrightarrow{p}^2A^2+\widetilde{\omega}^2C^2+B^2=0$$

Pole in propagator In gapped phase: zero crossing!

Size of Cooper pair

If we know the anomalous propagator $S_A(x)$ we can compute the size of the Cooper pairs:

$$\xi^{2} = \frac{\int d^{3}x \overrightarrow{x}^{2} |\frac{1}{2} \operatorname{Tr}(S_{A}(x)\Lambda^{+})|^{2}}{\int d^{3}x |\frac{1}{2} \operatorname{Tr}(S_{A}(x)\Lambda^{+})|^{2}}$$

Lattice formulation

We use Wilson fermions:

- Correct symmetry breaking pattern, Goldstone spectrum
- $N_f < 4$ needed to guarantee continuum limit
- No problems with locality, fourth root trick
- Chiral symmetry buried at bottom of Fermi sea

Lattice formulation

We use Wilson fermions:

- Correct symmetry breaking pattern, Goldstone spectrum
- $N_f < 4$ needed to guarantee continuum limit
- No problems with locality, fourth root trick
- Chiral symmetry buried at bottom of Fermi sea

 $S = \bar{\psi}_1 M(\mu) \psi_1 + \bar{\psi}_2 M(\mu) \psi_2 - \mathbf{J} \bar{\psi}_1 (C\gamma_5) \tau_2 \bar{\psi}_2^T + \mathbf{J} \psi_2^T (C\gamma_5) \tau_2 \psi_1$ $\gamma_5 M(\mu) \gamma_5 = M^{\dagger}(-\mu), \quad C\gamma_5 \tau_2 M(\mu) C\gamma_5 \tau_2 = -M^*(\mu)$

Lattice formulation

We use Wilson fermions:

- Correct symmetry breaking pattern, Goldstone spectrum
- $N_f < 4$ needed to guarantee continuum limit
- No problems with locality, fourth root trick
- Chiral symmetry buried at bottom of Fermi sea

 $S = \bar{\psi}_1 M(\mu) \psi_1 + \bar{\psi}_2 M(\mu) \psi_2 - J \bar{\psi}_1 (C \gamma_5) \tau_2 \bar{\psi}_2^T + \bar{J} \psi_2^T (C \gamma_5) \tau_2 \psi_1$ $\gamma_5 M(\mu) \gamma_5 = M^{\dagger}(-\mu), \quad C \gamma_5 \tau_2 M(\mu) C \gamma_5 \tau_2 = -M^*(\mu)$

Diquark source J introduced to

- lift low-lying eigenmodes in the superfluid phase
- study diquark condensation without uncontrolled approximations

Simulation Parameters

We work on two lattices, 'coarse' and 'fine'.

Two 'finer' lattices are used for $\mu=$ 0 simulations only

Name	β	κ	Volume	а	am_{π}	$m_{\pi}/m_{ ho}$
coarse	1.7	0.178	$8^3 imes 16$	0.23fm	0.79	0.80
fine	1.9	0.168	$12^3 imes 24$	0.18fm	0.65	0.80
finer, h	2.0	0.162	$12^3 imes 24$		0.64	0.83
finer, I	2.0	0.163	$12^3 imes 24$		0.52	0.76

Simulations performed with $j = J/\kappa = 0.04$ for $\mu = 0.3 - 1.0$

- > 300–500 trajectories for each μ .
- Simulations with j = 0.02, 0.06 for µ = 0.3, 0.5, 0.7, 0.9 (coarse lattice) → enable extrapolation to j = 0.

Bulk thermodynamics Gluon propagator results Quark propagator results

Thermodynamics results

• Close to SB scaling for $\mu > \mu_d$

- $\varepsilon_q \sim 2\varepsilon_{SB} \rightarrow k_F > E_F \implies$ binding energy?
- ▶ 30-40% of total energy from gluons!?
- Renormalisation of energy densities in progress [with Joyce Myers, Simon Hands]

Bulk thermodynamics Gluon propagator results Quark propagator results

Phase transitions

- Deconfining transition at $a\mu_d \sim 0.65$ on both lattices?!
- Still very far from saturation at μ_d
- ► BEC → BCS crossover becoming softer?
- Quarkyonic superfluid?

Bulk thermodynamics Gluon propagator results Quark propagator results

Gluon propagator results

Some finite volume and lattice spacing effects at $\mu = 0$

In-medium modifications, incl. violations of Lorentz symmetry, visible in magnetic gluon at $\mu = 0.7$

Bulk thermodynamics Gluon propagator results Quark propagator results

Coarse lattice results

Bulk thermodynamics Gluon propagator results Quark propagator results

Static magnetic gluon extrapolated to j=0

Bulk thermodynamics Gluon propagator results Quark propagator results

Magnetic gluon ($q_4 = 2\pi T$) extrapolated to j=0

Bulk thermodynamics Gluon propagator results Quark propagator results

Electric gluon extrapolated to j=0

Bulk thermodynamics Gluon propagator results Quark propagator results

Fine lattice results

Bulk thermodynamics Gluon propagator results Quark propagator results

In-medium gluon mass

Crude fit to 'massive' form

$$D_{E,M}(\overrightarrow{q},q_4) = \frac{Z}{\overrightarrow{q}^2 + q_4^2 + m_{e,m}^2}$$

not a good fit!

Improvement: Try HDL-inspired form?

Bulk thermodynamics Gluon propagator results Quark propagator results

In-medium gluon mass

Crude fit to 'massive' form

$$D_{E,M}(\overrightarrow{q}, q_4) = \frac{Z}{\overrightarrow{q}^2 + q_4^2 + m_{e,m}^2}$$
not a good fit!
Improvement:
Try HDL-inspired form?
Fit gives $m_0 = 0$ for $a\mu < 0.7$

Fit gives $m_e = 0$ for $a\mu < 0.7$ on fine lattice

Bulk thermodynamics Gluon propagator results Quark propagator results

Quark propagator results

Quark propagator in vacuum Raw data — not in physical units!

- Large lattice spacing dependence
- Substantial quark mass dependence for Z(p)
- Unusual momentum behaviour in Z(p)
- infrared suppression recovered in low-mass and continuum limit?

Bulk thermodynamics Gluon propagator results Quark propagator results

Tensor structure

Extracting form factors with the most general Ansatz for the tensor structure is complicated! We would like to reduce the number of components to consider

Bulk thermodynamics Gluon propagator results Quark propagator results

Tensor structure

Extracting form factors with the most general Ansatz for the tensor structure is complicated!

We would like to reduce the number of components to consider We find that

- ► the vector, scalar and temporal components of the normal propagator S_a, S_b, S_c and
- ► the scalar and tensor components A_b, A_d of the anomalous propagator are nonzero
- all other components are zero

Bulk thermodynamics Gluon propagator results Quark propagator results

Quark propagator on coarse lattice, $\mu = 0.5$

Bulk thermodynamics Gluon propagator results Quark propagator results

Normal propagator: spatial vector part

Bulk thermodynamics Gluon propagator results Quark propagator results

Normal propagator: temporal vector part

All data are for aj = 0.04!

Fermi momentum may be found by extrapolating zero crossing to $k_4 = 0$?

Bulk thermodynamics Gluon propagator results Quark propagator results

Normal propagator: scalar part

Bulk thermodynamics Gluon propagator results Quark propagator results

Anomalous propagator: scalar part

Bulk thermodynamics Gluon propagator results Quark propagator results

Anomalous propagator: tensor part

Summary

 \blacktriangleright Vacuum \rightarrow BEC \rightarrow BCS phase

- \blacktriangleright Vacuum \rightarrow BEC \rightarrow BCS phase
- Magnetic gluon strongly enhanced in BEC phase
- Screening of both magnetic and electric gluon propagator in BCS phase
 - Electric: Debye screening
 - Magnetic: Landau damping
 - Static magnetic gluon is also screened!

- \blacktriangleright Vacuum \rightarrow BEC \rightarrow BCS phase
- Magnetic gluon strongly enhanced in BEC phase
- Screening of both magnetic and electric gluon propagator in BCS phase
 - Electric: Debye screening
 - Magnetic: Landau damping
 - Static magnetic gluon is also screened!
- Strong modifications of quark propagator in BEC phase
 - Zero crossing in vector component
 - evidence of superfluid gap and Fermi surface!
 - Scalar component 'goes away'!
 - chiral condensate rotates into diquark condensate!

- \blacktriangleright Vacuum \rightarrow BEC \rightarrow BCS phase
- Magnetic gluon strongly enhanced in BEC phase
- Screening of both magnetic and electric gluon propagator in BCS phase
 - Electric: Debye screening
 - Magnetic: Landau damping
 - Static magnetic gluon is also screened!
- Strong modifications of quark propagator in BEC phase
 - Zero crossing in vector component
 - evidence of superfluid gap and Fermi surface!
 - Scalar component 'goes away'!
 - chiral condensate rotates into diquark condensate!
- Clear signal for anomalous propagation
 - Scalar anomalous propagator becomes pprox constant at large μ
 - Need to understand tensor component!

Outlook

- Extrapolate all results to zero diquark source
- Invert Gorkov propagator to obtain form factors and gaps
- Determine Fermi momentum from zero crossing in propagator
- ► Determine size of Cooper pairs (BEC→BCS)

Outlook

- Extrapolate all results to zero diquark source
- Invert Gorkov propagator to obtain form factors and gaps
- Determine Fermi momentum from zero crossing in propagator
- ► Determine size of Cooper pairs (BEC→BCS)
- Study Gribov copy effects / gauge dependence using stereographic Landau gauge [with Dhagash Mehta]
- Continuum extrapolation?

Volume dependence

 $[\mu = 0.9, j = 0.04]$

