QCD transition temperature: approaching the continuum

Z. Fodor

University of Wuppertal, Eotvos University Budapest, Forschungszentrum Juelich

new ('09) results of the Wuppertal-Budapest group (about scaling and lattice artefacts)

EMMI Workshop, September 1 2009, St. Goar

Outline

- 2
- Discrepancy: 2006 litarature
- 3 a² scaling
- 4 New results: Wuppertal-Budapest & 'hotQCD'
- 5 Summary

Lattice QCD introduction

Fundamental fields

Gauge fields:

 $U_{\mu}(x) \in SU(3)$ live on the links (μ index)

Quark fields:

 $\Psi(x)$, $\overline{\Psi}(x)$ anti-commuting Grassmann variables live on the sites

Wilson fermions: computationally expensive Staggered fermions: faster, BUT taste symmetry violation (only one pseudogoldstone pion instead of three) fermion doubling is avoided by rooting: "good, bad or ugly?"

Lattice formulation

$$Z=\int dU d\Psi dar{\Psi} e^{-S_E}$$

(1)

(2)

S_F is the Euclidean action

Parameters: gauge coupling g quark masses m_i ($i = 1..N_f$) (Chemical potentials μ_i) Volume (V) and temperature (T)

Finite $T \leftrightarrow$ finite temporal lattice extension

Continuum limit: $a \rightarrow 0 \iff N_t \rightarrow \infty$

 $T = \frac{1}{N_{t}a}$

QCD transition temperature: approaching the continuum

The nature of the QCD transition

Y.Aoki, G.Endrodi, Z.Fodor, S.D.Katz, K.K.Szabo, Nature, 443 (2006) 675 analytic transition (cross-over) \Rightarrow it has no unique T_c : examples: melting of butter (not ice) & water-steam transition

above the critical point c_{ρ} and $d\rho/dT$ give different T_{c} s. QCD: chiral & quark number susceptibilities or Polyakov loop they result in different T_{c} values \Rightarrow physical difference

The transition temperature: results and scaling

Y. Aoki, Z. Fodor, S.D. Katz, K.K. Szabo, Phys. Lett. B. 643 (2006) 46

Chiral susceptibility $T_c=151(3)(3)$ MeV $\Delta T_c=28(5)(1)$ MeV

Quark number susceptibility $T_c=175(2)(4)$ MeV $\Delta T_c=42(4)(1)$ MeV

Polyakov loop $T_c=176(2)(4)$ MeV $\Delta T_c=38(5)(1)$ MeV

Literature: discrepancies between T_c

Bielefeld-Brookhaven-Riken-Columbia Coll. (+MILC='hotQCD'):

M. Cheng et.al, Phys. Rev. D74 (2006) 054507

 T_c from $\chi_{\bar{\psi}\psi}$ and Polyakov loop, from both quantities:

 $T_c = 192(7)(4) \text{ MeV}$

Wuppertal-Budapest group (WB):

Y. Aoki, Z. Fodor, S.D. Katz, K.K. Szabo, Phys. Lett. B. 643 (2006) 46

chiral susceptibility: Polyakov and strange susceptibility: $T_c = 151(3)(3) \text{ MeV}$ $T_c = 175(2)(4) \text{ MeV}$

'chiral T_c ': \approx 40 MeV; 'confinement T_c ': \approx 15 MeV difference

both groups give continuum extrapolated results with physical m_π

Literature: discrepancies between T dependences

Reason: shoulders, inflection points are difficult to define? Answer: no, the whole temperature dependence is shifted

for chiral quantities \approx 35 MeV; for confinement \approx 15 MeV this discrepancy would appear in all quantities (eos, fluctuations)

150 MeV transition temperature: isn't it a bit too small? lattice works in V $\rightarrow \infty$, which gives much smaller T_{c}

T_c strongly depends on the geometry

nanotube-water doesn't freeze, even at hundred degrees below 0°C

exploratory study: A. Bazavov and B. Berg, Phys.Rev. D76 (2007) 014502 use 'confined' spatial boundary conditions: more like experiments

large deviation (upto 30 MeV) from the infinite volume limit if V $\rightarrow \infty$ is 150 MeV a 100 fm³ system might have 170 MeV

Possible reasons for the discrepancy

- "Non-lattice artefact/formulation" related reasons
- a. bug in the codes
- b. systematic errors are largely underestimated
- "Lattice artefact/formulation" related reasons
- a. the pion mass is not small enough: 'hotQCD' 230MeV \Rightarrow shift of 5 MeV, WB: 135 MeV pseudogoldstone
- b. not small enough lattice spacings: new 'hotQCD'/WB upto $N_t=8/12$
- c. actually it is not QCD, what we are studying (most large scale thermodynamics studies use staggered fermions)

Discretization errors in the transition region

we always have discretization errors: nothing wrong with it as long as

a. result: close enough to the continuum value (error subdominant) b. we are in the scaling regime (a^2 in staggered)

various types of discretization errors \Rightarrow we improve on them (costs)

we are speaking about the transition temperature region interplay between hadronic and quark-gluon plasma physics smooth cross-over: one of them takes over the other around T_c

both regimes (low T and high T) are equally important improving for one: $T \gg T_c$, doesn't mean improving for the other: $T < T_c$

example: 'expansion' around a Stefan-Boltzman gas (van der Waals) for water: it is a fairly good description for T \gtrsim 300° claculate the boiling point: more accuracy needed for the liquid phase

Examples for improvements, consequences

how fast can we reach the continuum pressure at $T=\infty$?

p4 action is essentially designed for this quantity $T \gg T_c$

asqtad designed mostly for T=0 physics (but good at high T, too)

stout-smeared one-link converges slower but in the a^2 scaling regime (e.g. extrapolation from N_t =8,10 provides a result within about 1%)

Chiral symmetry breaking and pions

transition temperature for remnant of the chiral transition: balance between the chirally broken and chirally symmetric sectors chiral symmetry breaking: 3 pions are the pseudo-Goldstone bosons

staggered QCD: 1 pseudo-Goldstone instead of 3 (taste violation) staggered lattice artefact \Rightarrow disappears in the continuum limit WB: stout-smeared improvement is designed to reduce this artefact

Scaling for the pion splitting

scaling regime is reached if a^2 scaling is observed asymptotic scaling starts only for N_t >8 (a \leq 0.15 fm): two messages a. N_t =8,10 extrapolation gives 'p' on the \approx 1% level: good balance b. stout-smeared improvement is designed to reduce this artefact most other actions need even smaller 'a' to reach scaling

Setting the scale in lattice QCD

in meteorology, aircraft industry etc. grid spacing is set by hand in lattice QCD we use g, m_{ud} and m_s in the Lagrangian ('a' not) measure e.g. the vacuum mass of a hadron in lattice units: $M_{\Omega}a$ since we know that $M_{\Omega}=1672$ MeV we obtain 'a' and T=1/ N_ta

Y.Aoki et al. [Wuppertal-Budapest Collaboration] arXiv:0903.4155

independently which quantity is taken (we used physical masses)

 \Rightarrow one obtains the same 'a' and T, result is safe

Z. Fodor

QCD transition temperature: approaching the continuum

Scaling of B_K in quenched simulations

HPQCD and UKQCD Collaborations, Phys. Rev. D73 (2006) 114502

 B_{K}^{NDR} (2 GeV) in the quenched approximation

unimproved action has large scaling violations asqtad action is somewhat better HYP smeared improvement \Rightarrow almost perfect scaling

T>0 results: strange susceptibility

'hotQCD' results are on N_t =8, WB results are on N_t =8,10,12,(16) 'hotQCD': results with two different actions are almost the same WB: for large T one extrapolates according to the known a^2 behaviour WB: no change in the lattice results compared to our 2006 paper note, that the experimental value of f_K decreased by 3% since 2006

about 20 MeV difference between the results

T>0 results: chiral condensate

Y.Aoki et al. [Budapest-Wuppertal Collaboration] arXiv:0903.4155

'hotQCD' results are on N_t =8, WB results are on N_t =8,10,12 'hotQCD': results with two different actions are almost the same WB: no lattice spacing dependence observed for N_t =8,10,12 WB: no change in the lattice results compared to our 2006 paper

about 35 MeV difference between the results

transition temperatures for various observables

	$\chi_{ar\psi\psi}/T^4$	$\chi_{ar{\psi}\psi}/T^2$	$\chi_{ar\psi\psi}$	$\Delta_{l,s}$	L	χ_s
WB'09	146(2)(3)	152(3)(3)	157(3)(3)	155(2)(3)	170(4)(3)	169(3)(3)
WB'06	151(3)(3)	-	-	-	176(3)(4)	175(2)(4)
BBCR	-	192(4)(7)	-	-	192(4)(7)	-

renormalized chiral susceptibility, renormalized chiral condensate Polyakov loop and strange quark number susceptibility

no change compare to our 2006 data (errors are reduced) note, that the experimental value of f_K decreased by 3% since 2006 Particle Data Group now gives $f_K=155.5(2)(8)(2)$ MeV (error 0.5%)

 r_0 is not directly measurable:

ETM:0.444(4) fm, QCDSF:0.467(6) fm, HPQCD&UKQCD:0.469(7) fm, PACS-CS:0.492(6)(+7) fm

Summary

- new (2009) results for the transition temperature
- three major improvements since 2006
 - a. at T=0 all simulations are done with physical quark masses b. to verify that the results are independent of the scale setting we use 5 experimentally well-known quantites: f_K , f_π , m_{K^*} , m_Ω , m_Φ c. even smaller lattice spacings: N_t =12 (in one case N_t =16)
- all findings are in complete agreement with our 2006 results
- Particle Data Group reduced the experimental value of f_K : 3%
- discrepancy between Wuppertal-Budapest & 'hotQCD' results

 a. for the remnant of the deconfinement transition: about 20 MeV
 b. for the remnant of the chiral transition: about 35 MeV
 ⇒ finding the reason: task for the future
- Wilson fermions: theoretically cleaner option

Final result for the hadron spectrum

Z. Fodor QCD transition temperature: approaching the continuum

CP violation, $K^0 - \bar{K}^0$ mixing and B_K

 $K_L \rightarrow e_R^+ \nu_L \pi^-$: 20.2% and $K_L \rightarrow e_R^- \bar{\nu}_L \pi^+$: 0% the reason is the maximal C-violation

do we know the absolute definition of left and right? exchange also left and right $K_L \rightarrow e_L^- \bar{\nu}_R \pi^+$: 20.2%

do it more precisely: K_L slightly prefers to decay into $e^+ \nu \pi^-$ than $e^- \bar{\nu} \pi^+$

 $\frac{\Gamma(K_L \to e^+ \nu \pi^-)}{\Gamma(K_L \to e^- \bar{\nu} \pi^+)} = 1.007 = 1 + f(\bar{\eta}, \bar{\rho}...) \ \langle \bar{K}^0 | \mathcal{H} | K^0 \rangle = 1 + f(\bar{\eta}, \bar{\rho}...) \frac{8}{3} m_K^2 f_K^2 B_K$

CKMfitter Group, UTfit Collab. still use quenched B_K from 1997

(日)

Importance sampling

$$\mathsf{Z} = \int \prod_{n,\mu} [dU_{\mu}(n)] e^{-S_g} \det(M[U])$$

we do not take into account all possible gauge configuration

each of them is generated with a probability \propto its weight

importance sampling, Metropolis algorithm: (all other algorithms are based on importance sampling)

 $P(U \rightarrow U') = \min \left[1, \exp(-\Delta S_g) \det(M[U']) / \det(M[U])\right]$

gauge part: trace of 3×3 matrices (easy, without M: quenched) fermionic part: determinant of $10^6 \times 10^6$ sparse matrices (hard)

more efficient ways than direct evaluation (Mx=a), but still hard

Consequences of the non-scaling behaviour

for large '*a*' no proper a^2 scaling (e.g. due to large m_{π} splitting) how do we monitor it, how to be sure being in the scaling regime? dimensionless combinations in the $a \rightarrow 0$ limit:

 $T_c r_0$ or T_c/f_K for the remnant of the chiral transition

 N_t =4,6: inconsistent continuum limit

*N*_t=6,8,10: consistent continuum limit (stout-link improvement)

independently which quantity is taken one obtains the same T_c signal: extrapolation is safe, we are in the a^2 scaling regime

Consequences of the non-scaling behaviour

no proper a^2 scaling for large '*a*' (e.g. due to large m_{π} splitting) how do we monitor it, how to be sure being in the scaling regime? dimensionless combinations in the $a \rightarrow 0$ limit:

 $T_c r_0$ or T_c/f_K for the remnant of the chiral transition

 N_t =4,6: inconsistent continuum limit

*N*_t=6,8,10: consistent continuum limit (stout-link improvement)

independently which quantity is taken one obtains the same T_c signal: extrapolation is safe, we are in the a^2 scaling regime

Scenarios for $\mu > 0$

Does the crossover region shrink or expand? The curvature can affect the existence of the critical endpoint Estimate: if $\mu_{crit} = 360 \text{ MeV} \rightarrow \Delta \kappa \approx 0.02$

Observables

 T_c is defined as inflection point or given value $\left(\frac{\mathcal{O}(T=0)+\mathcal{O}(T=\infty)}{2}\right)$ μ dependence by Taylor expansion \rightarrow curvature

Two procedures:

- 1. determine inflection point as a function of μ
- 2. average shifts for different T-s

Preliminary results

Continuum extrapolated results from $N_t = 6, 8$ and 10; both procedures

Polyakov loop result consistent with χ_s/T^2

Preliminary results

Difference $\Delta \kappa \equiv \kappa (\chi_s/T^2) - \kappa (\bar{\psi}\psi_r)$ not consistent with zero Necessary condition for the critical point

But not sufficient

Strength of the transition from individual quantities \rightarrow more statistics needed

more statistics in the Taylor method

determining the inflection point needs 10-times more statistics to that end the whole T dependence should be determined this gives more than just the inflection point a clear signal for broadening or shrinking will be seen $a \rightarrow 0$ can be done with present resources

the Taylor procedure gives only the leading order term(s) in μ N_t =4 unimproved staggered experience [Fodor-Katz'01, Fodor-Katz'04] the leading order terms are insensitive to the critical point \Rightarrow evaluation of the whole determinant, we need all the terms in μ

our action (smeared improved): better at T=0 & evaluation possible for p4, asqtad or hisq no such eigenvalue structure (det) is known

(it gives certainly more information than just the leading order terms)

memory/CPU requirements for full determinants

 N_t =4 & N_s =8,10,12 needed 1 GB memory & 25 CPU years (in '04) memory requirements grow as N_t^6 , CPU requirements as N_t^9

accumulate the same statistics (shown by the first CPU row) to reach the same μa : exponentially more configs are needed '05 observation: applicability range $\propto V^{-0.35}$ and $\mu a \propto V^{-0.25}$ \Rightarrow additional increase of the statistics (second CPU⁺ row)

Nt	4	6	8	10
memory [GB]	1	11	64	244
'04 CPU [kyears]	0.025	1	13	95
'04 CPU ⁺ [kyears]	0.025	1	18	150
machine [year]	cluster	cluster	2 BG/P	15 BG/P

 \Rightarrow N_t=6,8,10: our present resources are not enough for that