QCD equation of state

at Nt=8

Szabolcs Borsanyi Wuppertal

<u>outline</u>

1. Nf=0

II. Nf=3

III. Nf=2+1

IV. On the Tc controversy

based on mostly unpublished work by

Gergely Endrődi Zoltán Fodor Antal Jakovác Sándor Katz Kálmán Szabó (and myself)

I. Quenched simulations

G. Boyd et al., Nucl. Phys. B469, 419 (1996) [hep-lat/9602007]; A. Papa, Nucl. Phys. B478, 335 (1996) [hep-lat/9605004]; B. Beinlich, F. Karsch, E. Laermann and A. Peikert, Eur. Phys. J. C6, 133 (1999) [hep-lat/9707023]; M. Okamoto et al. [CP-PACS Collaboration], Phys. Rev. D60, 094510 (1999) [hep-lat/9905005].

Quenched is clean and cheap: so why don't lattice result come close to the SB limit? where are high T results?

Kajantie, Laine, Rummukainen, Schroder: Phys.Rev.D67:105008,2003

Renormalization

Free energy (or the trace anomaly) has a T-independent quartic divergence. Standard approach: remove p(T=0) T=0 is too expensive Our approach:

We determine p(T)-p(T/2):

$$p(T)=[p(T)-p(T/2)] + [p(T/2)-p(T/4)] + ...$$

Direct approach

In the standard approach the entire EoS can be calculated as an integral, but not individual pressure values.

The direct approach calculates p(T)-p(T/2) at a single T temperature.

$$\bar{p} = \frac{1}{N_t N_s^3} \log Z(N_t) - \frac{1}{2N_t N_s^3} \log Z(2N_t) = \frac{1}{2N_t N_s^3} \log \left(\frac{Z(N_t)^2}{Z(2N_t)} \right)$$

$$\bar{p} \sim \log \left(\frac{Z(N_t)^2}{Z(2N_t)} \right) = \log \left(\frac{\bar{Z}(1)}{\bar{Z}(0)} \right) = \int_0^1 d\alpha \frac{d \log \bar{Z}(\alpha)}{d\alpha} = \int_0^1 d\alpha \langle S_{1b} - S_{2b} \rangle$$

[Endrodi et al. 0710.4197]

$$\frac{Z^{2}(N_{t})}{Z(2N_{t})} = \frac{\sum_{i=0}^{N_{t}-2} \sum_{i=0}^{N_{t}-1} \sum_{i=0}^{N_{t}-$$

Direct approach

In the standard approach the entire EoS can be calculated as an integral, but not individual pressure values.

The direct approach calculates p(T)-p(T/2) at a single T temperature.

$$\bar{p} = \frac{1}{N_t N_s^3} \log Z(N_t) - \frac{1}{2N_t N_s^3} \log Z(2N_t) = \frac{1}{2N_t N_s^3} \log \left(\frac{Z(N_t)^2}{Z(2N_t)} \right)$$

$$\bar{p} \sim \log\left(\frac{Z(N_t)^2}{Z(2N_t)}\right) = \log\left(\frac{\bar{Z}(1)}{\bar{Z}(0)}\right) = \int_0^1 d\alpha \frac{d\log\bar{Z}(\alpha)}{d\alpha} = \int_0^1 d\alpha \langle S_{1b} - S_{2b}\rangle$$

[Endrodi 0710.4197]

$$\frac{Z^{2}(N_{t})}{Z(2N_{t})} = \frac{\sum_{t=0}^{2} \sum_{t=0}^{\infty} \sum_{t=0}^{$$

$$\bar{\alpha}(\alpha) = \alpha \alpha \alpha$$

Direct approach

In the standard approach the entire EoS can be calculated as an integral, but not individual pressure values.

The direct approach calculates p(T)-p(T/2) at a single T temperature.

[Endrodi 0710.4197]

$$\bar{p} = \frac{1}{N_t N_s^3} \log Z(N_t) - \frac{1}{2N_t N_s^3} \log Z(2N_t) = \frac{1}{2N_t N_s^3} \log \left(\frac{Z(N_t)^2}{Z(2N_t)} \right)$$

$$\bar{p} \sim \log\left(\frac{Z(N_t)^2}{Z(2N_t)}\right) = \log\left(\frac{\bar{Z}(1)}{\bar{Z}(0)}\right) = \int_0^1 d\alpha \frac{d\log\bar{Z}(\alpha)}{d\alpha} = \int_0^1 d\alpha \langle S_{1b} - S_{2b}\rangle$$

$$\overline{\mathbb{Z}}(\alpha) = \overline{\mathbb{Z}}(\alpha)$$

The costs of high-T

Renormalization in practice:

Trace anomaly is obtained as the difference of two $O(N_t^4)$ numbers

$$\frac{\Theta^{\mu\mu}(T)}{T^4} \equiv \frac{\epsilon - 3p}{T^4} = T \frac{\partial}{\partial T} (p/T^4)$$

Our choice: Symanzik action

1.4 $f^{(0)}(N_{\tau})/f^{(0)}_{cont}$ 1.2 $f^{(0)}(N_{\tau})/f^{(0)}_{cont}$ 1.3 $f^{(0)}(N_{\tau})/f^{(0)}_{cont}$ 1.4 $f^{(0)}(N_{\tau})/f^{(0)}_{cont}$ 1.5 $f^{(0)}(N_{\tau})/f^{(0)}_{cont}$ 1.6 $f^{(0)}(N_{\tau})/f^{(0)}_{cont}$ 1.7 $f^{(0)}(N_{\tau})/f^{(0)}_{cont}$ 1.8 $f^{(0)}(N_{\tau})/f^{(0)}_{cont}$ 1.9 $f^{(0)}(N_{\tau})/f^{(0)}_{cont}$ 1.10 $f^{(0)}(N_{\tau})/f^{(0)}_{cont}$

Quenched code: 80-100 Gflop/s on a GPU

Lattice vs perturbation theory

 $g^6\log(1/g)$ + fitted coeff for g^6 :

Kajantie, Laine, Rummukainen, Schroder: Phys.Rev.D67:105008,2003

Lattice vs perturbation theory

 $g^6\log(1/g)$ + fitted coeff for g^6 :

Kajantie, Laine, Rummukainen, Schroder: Phys.Rev.D67:105008,2003

II. Nf=3 QCD

Action: staggered fermions with fat links

$$S_g = \Box + \Box$$

$$S_f = \longrightarrow + \longleftrightarrow$$

stout smearing ρ =0.15 $S_f = \longrightarrow + \longleftrightarrow \begin{array}{c} \text{Stout Sinearing } p = 0.10 \\ \text{parameters} \end{array} \begin{array}{c} N_{smr} = 2 \end{array}$ (oversimplified)

Is staggered formulation appropriate? Zero T physics matches experiment,

Is the spectrum physical?

UV physics matches perturbation theory Pion splitting scales close to the continuum limit.

Stout smearing results in a balanced improved action: reduced taste symmetry breaking

Pressure is an integral in theory space

$$\frac{\Delta p}{T^4} = N_t^4 \int_{(\beta_0, m_{q0})}^{(\beta, m_q)} d(\beta, m_q) \left[\frac{1}{N_t N_s^3} \begin{pmatrix} \partial \log Z / \partial \beta \\ \partial \log Z / \partial m_q \end{pmatrix} - \frac{1}{N_{t0} N_{s0}^3} \begin{pmatrix} \partial \log Z_0 / \partial \beta \\ \partial \log Z_0 / \partial m_q \end{pmatrix} \right]$$

with
$$\langle \bar{\psi}\psi \rangle_q = \frac{T}{V} \frac{\partial \ln Z}{\partial m_q}$$
, $q=l, s$, $\langle S_g \rangle = -\frac{T}{V} \frac{\partial \ln Z}{\partial \beta}$

$$\langle S_g \rangle = -\frac{T}{V} \frac{\partial \ln Z}{\partial \beta}$$

Integration along the LCP one integrates the trace anomaly. gives $p(T)/T^4 - p(T_0)/T_0^4$

Renormalization

Renorm. condition:

attice spacing [fm]

$$m_{K}/f_{K}$$
=495/155.5
 $m_{PS}/f_{PS} \approx 3.6$

$$m_\pi/f_K$$
=135/155.5 Nf= $m_{PS} \approx 720 MeV$ Nf

bare coupling

bare mass

We reached perturbative running: we completed the renormalization for arbitrary high cut-off. This enables us to simulate an arbitrary high temperature.

Nf=3 equation of state

$$\Omega(T, V) = T \ln Z(T, V)$$

$$\frac{\Theta^{\mu\mu}(T)}{T^4} \equiv \frac{\epsilon - 3p}{T^4} = T \frac{\partial}{\partial T} (p/T^4) \qquad p = \frac{1}{V} \Omega(T, V) \qquad \epsilon = \frac{T^2}{V} \frac{\partial \Omega(T, V)/T}{\partial T}$$

Towards the perturbative limit

Note that the perturbative curves are very sensitive to: a) Λ_{QCD} b) renormalization. scale

III. At physical quark mass

The QCD equation of state

Wuppertal vs HotQCQ

Equation of state

a) Tc discrepancyis manifest in EoSb) hotQCD EoSshoots up steeper

p4: optimized for infinite temperature

(pert. improvement helps reaching the SB limit)

stout: optimized for phase with broken chiral symmetry (smearing helps towards correct spectrum)

IV What sets the pion mass?

Illustration:

How to match Wuppertal and hotQCD results?

- Lattice artefacts for taste violation
 stout (Wuppertal) < asqtad (MILC) < p4 (Bielefeld)
- We try to match asqtad's average pion mass by tuning our m_{π} (no perfect matching is possible)
- We repeat the Tc analysis with this heavier pion

Matching the average pion mass

Transition temperature vs pion mass

We reproduce the hotQCD transition temperature with a heavier pion mass.

At that mass we see chiral and confinement transition at the same Tc

Message:

- We push the Nf=0 and Nf=3 equation of state towards the perturbative limit.
- Our Nf=2+1 equation of state at Nt=4,6 and 8 scales
- The discrepancy in Tc manifests in the equation of state p4 has a steeper and later (30 MeV) rise in the pressure.
- Our pion mass spectrum is significantly closer to physical than our competitor's;
 puts confidence in our simulations also below 200 MeV
- The transition pattern observed by the hotQCD collaboration might be reproduced with a "heavier pion".