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I. Quenched simulations
G. Boyd et al., Nucl. Phys. B469, 419 (1996) [hep-lat/9602007]; A. Papa, Nucl. Phys. B478, 335 
(1996) [hep-lat/9605004]; B. Beinlich, F. Karsch, E. Laermann and A. Peikert, Eur. Phys. J. C6, 133 
(1999) [hep-lat/9707023]; M. Okamoto et al. [CP-PACS Collaboration], Phys. Rev. D60, 094510 
(1999) [hep-lat/9905005].

Kajantie, Laine, Rummukainen, Schroder: Phys.Rev.D67:105008,2003
g6log(1/g) + fitted coeff for g6:

Quenched is clean and cheap: 
so why don’t lattice result come close to the SB limit?
where are high T results?
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Renormalization

We determine p(T)-p(T/2):

-
48x6 48x12

Free energy (or the trace anomaly) has a
T-independent quartic divergence. 
Standard approach: remove p(T=0)
Our approach:

T=0 is too expensive

p(T)=[p(T)-p(T/2)] + [p(T/2)-p(T/4)] + ...
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Direct approach
In the standard approach the entire EoS can be calculated as an 
integral, but not individual pressure values.
The direct approach calculates p(T)-p(T/2)
at a single T temperature. [Endrodi et al. 0710.4197]
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The costs of high-T
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Lattice vs perturbation theory

Kajantie, Laine, Rummukainen, Schroder: Phys.Rev.D67:105008,2003

g6log(1/g) + fitted coeff for g6:
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Lattice vs perturbation theory

Kajantie, Laine, Rummukainen, Schroder: Phys.Rev.D67:105008,2003

g6log(1/g) + fitted coeff for g6:
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II. Nf=3 QCD
Action: staggered fermions with fat links

+Sg = Sf =+
stout smearing

parameters
(oversimplified)
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Figure 2: The line of constant physics. The result was obtained by using the φ and K masses
(see text). The strange quark mass in lattice units is shown as a function of β. In the rest of our
analysis we use light quark masses of mud=ms/25.

the high temperature scaling. However, usually an extrapolation based on Nt and Nt + 2
with standard staggered action gives a better high T behavior for the pressure than p4
[17] or asqtad [22, 23] action with Nt. Since our choice of action is about an order of
magnitude faster than e.g. p4, we decided to use this less impoved action, with which our
CPU resources made it possible to study two lattice spacings (Nt=4 and 6).

Staggered fermions have an unconvenient property: they violate taste symmetry at
finite lattice spacing. Among other things this violation results in a splitting in the pion
spectrum, which should vanish in the continuum limit. The stout-link improvement makes
the staggered fermion taste symmetry violation small already at moderate lattice spacings.
We found that a stout-smearing level of Nsmr=2 and smearing parameter of ρ=0.15 are the
optimal values of the smearing procedure. In order to illustrate the advantage of the stout-
link action Figure 1 compares the taste violation in different approaches of the literature,
which were used to determine the EoS of QCD. Results on the pion mass splitting for
unimproved (used by Ref. [4, 5]) 3, p4 improved (used by Ref. [7, 24]), asqtad improved
(used by [18, 25]) and stout-link improved (this work) staggered fermions are shown. The
parameters were chosen to be the ones used by the different collaborations at the finite
temperature transition point.

In previous staggered analyses the gauge configurations were produced by the R-
algorithm [11] at a given stepsize. These studies were carried out usually at one stepsize,
which is 1/2 or 2/3 of the light quark mass. The stepsize is an intrinsic parameter of
the algorithm, which has to be extrapolated to zero. None of the previous staggered lat-
tice thermodynamics studies performed this extrapolation. Using the R-algorithm without
stepsize extrapolation leads to uncontrolled systematic errors. E.g. let us look at the dif-
ference (on Nt=6 lattices at intermediate β) between the extrapolated plaquette value and
the value obtained at stepsize which is 2/3 of the light quark mass. This difference is larger
than the total contribution of the plaquette to the pressure. Clearly, such a technique can
not be used.

Instead of using the approximate R-algorithm this work uses the exact RHMC-
algorithm (rational hybrid Monte-Carlo) [12, 13]. This technique approximates the frac-

3We performed simulations to obtain the MILC standard action value at mq = 0.0125, βc = 5.415.
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(see text). The strange quark mass in lattice units is shown as a function of β. In the rest of our
analysis we use light quark masses of mud=ms/25.

the high temperature scaling. However, usually an extrapolation based on Nt and Nt + 2
with standard staggered action gives a better high T behavior for the pressure than p4
[17] or asqtad [22, 23] action with Nt. Since our choice of action is about an order of
magnitude faster than e.g. p4, we decided to use this less impoved action, with which our
CPU resources made it possible to study two lattice spacings (Nt=4 and 6).

Staggered fermions have an unconvenient property: they violate taste symmetry at
finite lattice spacing. Among other things this violation results in a splitting in the pion
spectrum, which should vanish in the continuum limit. The stout-link improvement makes
the staggered fermion taste symmetry violation small already at moderate lattice spacings.
We found that a stout-smearing level of Nsmr=2 and smearing parameter of ρ=0.15 are the
optimal values of the smearing procedure. In order to illustrate the advantage of the stout-
link action Figure 1 compares the taste violation in different approaches of the literature,
which were used to determine the EoS of QCD. Results on the pion mass splitting for
unimproved (used by Ref. [4, 5]) 3, p4 improved (used by Ref. [7, 24]), asqtad improved
(used by [18, 25]) and stout-link improved (this work) staggered fermions are shown. The
parameters were chosen to be the ones used by the different collaborations at the finite
temperature transition point.

In previous staggered analyses the gauge configurations were produced by the R-
algorithm [11] at a given stepsize. These studies were carried out usually at one stepsize,
which is 1/2 or 2/3 of the light quark mass. The stepsize is an intrinsic parameter of
the algorithm, which has to be extrapolated to zero. None of the previous staggered lat-
tice thermodynamics studies performed this extrapolation. Using the R-algorithm without
stepsize extrapolation leads to uncontrolled systematic errors. E.g. let us look at the dif-
ference (on Nt=6 lattices at intermediate β) between the extrapolated plaquette value and
the value obtained at stepsize which is 2/3 of the light quark mass. This difference is larger
than the total contribution of the plaquette to the pressure. Clearly, such a technique can
not be used.

Instead of using the approximate R-algorithm this work uses the exact RHMC-
algorithm (rational hybrid Monte-Carlo) [12, 13]. This technique approximates the frac-

3We performed simulations to obtain the MILC standard action value at mq = 0.0125, βc = 5.415.

– 5 –

Stout smearing results in a balanced improved action: reduced taste symmetry breaking

Is staggered formulation appropriate?

Is the spectrum physical?

Zero T physics matches experiment,
UV physics matches perturbation theory
Pion splitting scales close to the 
continuum limit.
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Pressure is an integral in theory space

13

FIG. 9: (color online) Pressure divided by energy density (p/ε) and the square of the velocity of sound (c2
s) calculated on

lattices with temporal extent Nτ = 6 (p4, [? ]) and Nτ = 8 using the p4 as well as the asqtad action. Lines without data
points give the square of the velocity of sound calculated analytically from Eq. (??) using the interpolating curves for ε/T 4

and p/T 4. The dashed-dotted line at low temperatures gives the result for p/ε from a hadron resonance gas (HRG) calculation
using mmax = 2.5 GeV.

with the reduced mass and temperature variables,

m̄ ≡ |ml −mcrit| and t =
∣∣∣∣
T − Tc

Tc

∣∣∣∣ + c

(
µl

Tc

)2

. (11)

Note that in the definition of the reduced temperature t, its dependence on the light quark chemical potential µl in
the vicinity of the critical point (t, m̄) ≡ (0, 0) was taken into account6. To leading order, the reduced temperature
depends quadratically on µl, while it is linear in the temperature itself.

Derivatives of the free energy with respect to quark masses define the light and strange quark chiral condensates,

〈ψ̄ψ〉q =
T

V

∂ lnZ

∂mq
, q = l, s, (12)

while derivatives with respect to temperature give the bulk thermodynamic quantities discussed in the previous
sections. Here ml refers to one of the degenerate light up or down quark masses and the condensates defined in
Eq. (??) are one-flavor condensates. The derivative of the chiral condensate with respect to the quark mass defines
the chiral susceptibilities χm,q ∼ ∂2 lnZ/∂m2

q. The divergence of χm,q at Tc in the chiral limit is an unambiguous
signal of the chiral phase transition. In addition, the fluctuations of Goldstone modes also induce divergences in the
chiral limit for T ≤ Tc [? ]. Thus χm,q in the chiral limit is finite only for T > Tc.

In the vicinity of Tc, where thermodynamics is dominated by the singular part of the partition function, n derivatives
with respect to temperature T are equivalent to 2n derivatives with respect to the light quark chemical potential.
Second derivatives with respect to light and strange quark chemical potentials define quark number susceptibilities,

χq

T 2
=

1
V T 3

∂2 lnZ

∂(µq/T )2
, q = l, s . (13)

6 We suppress here a possible but small coupling to the strange quark chemical potential.

〈Sg〉 = −T

V

∂ lnZ

∂β
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(see text). The strange quark mass in lattice units is shown as a function of β. In the rest of our
analysis we use light quark masses of mud=ms/25.
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ference (on Nt=6 lattices at intermediate β) between the extrapolated plaquette value and
the value obtained at stepsize which is 2/3 of the light quark mass. This difference is larger
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Integration along the LCP
one integrates the trace 
anomaly.
gives p(T)/T4 - p(T0)/T0

4

beta ➙ -log(a) ➙ log(T) 

coarse fine

Line of constant physics:

We shortly review the integral technique to obtain the pressure [20]. For large homo-
geneous systems the pressure is proportional to the logarithm of the partition function:

pa4 =
Ta

V/a3
log Z(T, V ) =

1

NtN3
s

log Z(Ns, Nt;β,mq). (3.1)

(Index ‘q’ refers to the ud and s flavors.) The volume and temperature are connected to
the spatial and temporal extensions of the lattice:

V = (Nsa)3, T =
1

Nta
. (3.2)

The divergent zero-point energy has to be removed by subtracting the zero temperature
(Nt → ∞) part of eq. (3.1). In practice the zero temperature subtraction is performed by
using lattices with finite, but large Nt (called Nt0, see Table 1). So the normalized pressure
becomes:

p

T 4
= N4

t

[

1

NtN3
s

log Z(Ns, Nt;β,mq) −
1

Nt0N3
s0

log Z(Ns0, Nt0;β,mq)

]

. (3.3)

With usual Monte-Carlo techniques one cannot measure log Z directly, but only its deriva-
tives with respect to the bare parameters of the lattice action. Having determined the
partial derivatives one integrates in the multi-dimensional parameter space:

p

T 4
= N4

t

∫ (β,mq)

(β0,mq0)
d(β,mq)

[

1

NtN3
s

(

∂ log Z/∂β
∂ log Z/∂mq

)

−
1

Nt0N3
s0

(

∂ log Z0/∂β
∂ log Z0/∂mq

)]

, (3.4)

where Z/Z0 are shorthand notations for Z(Ns, Nt)/Z(Ns0, Nt0). Since the integrand is
a gradient, the result is by definition independent of the integration path. We need the
pressure along the LCP, thus it is convenient to measure the derivatives of log Z along the
LCP and perform the integration over this line in the β, mud and ms parameter space.
The lower limits of the integrations (indicated by β0 and mq0) were set sufficiently below
the transition point. By this choice the pressure gets independent of the starting point (in
other words it vanishes at small temperatures). In the case of 2 + 1 flavor staggered QCD
the derivatives of log Z with respect to β and mq are proportional to the expectation value
of the gauge action (〈Sg〉 c.f. eq. (2.1)) and to the chiral condensates (〈ψ̄ψq〉), respectively.
Eq. (3.4) can be rewritten appropriately and the pressure is given by (in this formula we
write out explicitely the flavours):

p

T 4
= N4

t

∫ (β,mud,ms)

(β0,mud0,ms0)
d(β,mud,ms)





1

NtN3
s





〈−Sg/β〉
〈ψ̄ψud〉
〈ψ̄ψs〉



 −
1

Nt0N3
s0





〈−Sg/β〉0
〈ψ̄ψud〉0
〈ψ̄ψs〉0







 ,

(3.5)
where 〈. . . 〉0 means averaging on a N3

s0 · Nt0 lattice.
The integral method was originally introduced for the pure gauge case, for which

the integral is one dimensional, it is performed along the β axis. Previous studies for
staggered dynamical QCD (e.g. [5, 27, 7]) used a one-dimensional parameter space instead
of performing it along the LCP. Note, that for full QCD the integration should be performed
along a LCP path in a multi-dimensional parameter space.

– 8 –
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Renormalization

bare coupling

Renorm. condition: mK/fK=495/155.5 mπ/fK=135/155.5

bare mass
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We reached perturbative running:
we completed the renormalization for arbitrary high cut-off. 
This enables us to simulate an arbitrary high temperature.

Nf=2+1
Nf=3mPS/fPS ≈ 3.6 mPS ≈ 720MeV
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Nf=3 equation of state

Wuppertal
Preliminary

Wuppertal
Preliminary
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Towards the perturbative limit

Note that the perturbative curves are very sensitive to:  
     a) ΛQCD b) renormalization. scale
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III. At physical quark mass
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The QCD equation of state

Wuppertal
Preliminary
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Wuppertal vs HotQCQ Equation of state

p4: optimized for infinite temperature
(pert. improvement helps reaching the SB limit)

stout: optimized for phase with broken chiral symmetry
(smearing helps towards correct spectrum)

a) Tc discrepancy 
is manifest in EoS
b) hotQCD EoS 
shoots up steeper
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IV What sets the pion mass?
Illustration: 
How to match Wuppertal and hotQCD results?

• Lattice artefacts for taste violation
stout (Wuppertal) < asqtad (MILC) < p4 (Bielefeld)

• We try to match asqtad’s average pion mass by 
tuning our mπ (no perfect matching is possible)

• We repeat the Tc analysis with this heavier pion
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Matching the average pion mass
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Transition temperature vs pion mass

We reproduce the hotQCD transition temperature
with a heavier pion mass. 
At that mass we see chiral and confinement transition at the same Tc
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Message:
• We push the Nf=0 and Nf=3 equation of state towards 

the perturbative limit.

• Our Nf=2+1 equation of state at Nt=4,6 and 8 scales

• The discrepancy in Tc manifests in the equation of state
p4 has a steeper and later (30 MeV) rise in the pressure. 

• Our pion mass spectrum is significantly closer to physical 
than our competitor’s;
puts confidence in our simulations also below 200 MeV

• The transition pattern observed by the hotQCD 
collaboration might be reproduced with a “heavier pion”.
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