Universal Aspects of Many-Flavor QCD

Holger Gies

Friedrich-Schiller-Universität Jena

& J. Jaeckel: Eur.Phys.J.C46:433,2006 [hep-ph/0507171]

& J. Braun: Phys.Lett.B645:53,2007 [hep-ph/0512085], JHEP 0606:024,2006 [hep-ph/0602226], arXiv:0909.XXXX

QCD Phase Diagram

[FAIR@www.gsi.de]

"Learning by D o ing"

"Learning by Deforming"

AdS/QCD

Lattice QCD

[LEINWEBER@

WWW.PHYSICS.ADELAIDE.EDU.AU]

Large N_c

[Kelley@

WWW.NONEQUILIBRIUM.NET]

"Learning by Deforming"

AdS/QCD

Lattice QCD

[LEINWEBER@

WWW.PHYSICS.ADELAIDE.EDU.AU]

Large N_c

[Kelley@ www.nonequilibrium.net]

"many-flavor QCD"

for $N_f \to \infty$, see (Blaizot et al.'06)

▷ charge screening:

 $\triangleright \beta$ function

$$\beta = -2\left(\frac{11}{3}N_{\rm c} - \frac{2}{3}N_{\rm f}\right)\frac{g^4}{16\pi^2} - 2\left(\frac{34N_{\rm c}^3 + 3N_{\rm f} - 13N_{\rm c}^2N_{\rm f}}{3N_{\rm c}}\right)\frac{g^6}{(16\pi^2)^2} + \dots$$

▷ charge screening:

 $\triangleright \beta$ function

$$\beta = -2\left(\frac{11}{3}N_{\rm c} - \frac{2}{3}N_{\rm f}\right)\frac{g^4}{16\pi^2}\underbrace{-2\left(\frac{34N_{\rm c}^3 + 3N_{\rm f} - 13N_{\rm c}^2N_{\rm f}}{3N_{\rm c}}\right)}_{>0}\frac{g^6}{(16\pi^2)^2} + \dots$$

for
$$N_{\rm f} > \frac{34 N_{\rm c}^{\ 3}}{13 N_{\rm c}^{\ 2} - 3} \stackrel{\rm SU(3)}{\simeq} 8.05$$

 $\triangleright \beta$ function

$$\beta = -2\left(\frac{11}{3}N_{\rm c} - \frac{2}{3}N_{\rm f}\right)\frac{g^4}{16\pi^2} - 2\left(\frac{34N_{\rm c}^3 + 3N_{\rm f} - 13N_{\rm c}^2N_{\rm f}}{3N_{\rm c}}\right)\frac{g^6}{(16\pi^2)^2} + \dots$$

▷ e.g., SU(3): IR fixed point α_*

(CASWELL'74; BANKS&ZAKS'82)

 $\triangleright \beta$ function

$$\beta = -2\left(\frac{11}{3}N_{\rm c} - \frac{2}{3}N_{\rm f}\right)\frac{g^4}{16\pi^2} - 2\left(\frac{34N_{\rm c}^3 + 3N_{\rm f} - 13N_{\rm c}^2N_{\rm f}}{3N_{\rm c}}\right)\frac{g^6}{(16\pi^2)^2} + \dots$$

 \triangleright N_f dependence of α_*

 $\triangleright \beta$ function

$$\beta = -2\left(\frac{11}{3}N_{\rm c} - \frac{2}{3}N_{\rm f}\right)\frac{g^4}{16\pi^2} - 2\left(\frac{34N_{\rm c}^3 + 3N_{\rm f} - 13N_{\rm c}^2N_{\rm f}}{3N_{\rm c}}\right)\frac{g^6}{(16\pi^2)^2} + \dots$$

⊳ e.g. *N*_f = 14

→ IR fixed point

 \triangleright Caswell-Banks-Zaks fixed point destabilized by χ SB:

Many-flavor Phase Diagram

Many-flavor Phase Diagram

 \triangleright unified scale dependence of observables in QCD (in the χ limit):

$$T_{\rm c}, f_{\pi}, \langle \bar{\psi}\psi \rangle^{1/3}, m_{c.q.}, \cdots \sim \Lambda_{\rm QCD}$$

 \triangleright perturbatively: $\Lambda_{QCD} \sim$ position of the Landau pole

$$0 \leftarrow \frac{1}{\alpha(\Lambda_{\text{QCD}})} = \frac{1}{\alpha(\mu_0)} + 4\pi b_0 \ln \frac{\Lambda_{\text{QCD}}}{\mu_0}, \quad b_0 = \frac{1}{8\pi} \left(\frac{11}{3} \textit{N}_{\text{c}} - \frac{2}{3}\textit{N}_{\text{f}}\right)$$

pert. RG scale: $\mu_0 = m_Z, m_\tau, \ldots$

CAVEAT: comparison of theories!

 \rhd unified scale dependence of observables in QCD (in the χ limit):

$$T_{\rm c}, f_{\pi}, \langle \bar{\psi}\psi \rangle^{1/3}, m_{c.q.}, \dots \sim \Lambda_{\rm QCD}$$

 \triangleright perturbatively: $\Lambda_{QCD} \sim$ position of the Landau pole

 \triangleright unified scale dependence of observables in QCD (in the χ limit):

 $T_{\rm c}, f_{\pi}, \langle \bar{\psi}\psi \rangle^{1/3}, m_{c.q.}, \dots \sim \Lambda_{\rm QCD}$

 \triangleright T_c scaling at small N_f:

(BRAUN, HG'05,'06)

$$\begin{array}{rcl} T_{\rm c} & \sim & \Lambda_{\rm QCD} \simeq \mu_0 \, {\rm e}^{-\frac{1}{4\pi b_0 \alpha(\mu_0)}} \\ & \simeq & \mu_0 \, {\rm e}^{-\frac{6\pi}{11N_{\rm c}\alpha(\mu_0)}} \left(1 - \epsilon N_{\rm f} + \mathcal{O}((\epsilon N_{\rm f})^2)\right) \end{array}$$

where
$$\epsilon = \frac{12\pi}{121N_c^2\alpha(\mu_0)} \simeq 0.107$$
 for $N_c = 3$ and $\mu_0 = m_{\tau}$

 \implies linear small- $N_{\rm f}$ behavior

(BRAUN, HG'05,'06)

(BRAUN, HG'05,'06)

▷ application: *N*_f-scaling of PNJL / PQM model parameters

 \implies significant improvement of thermodynamics predictions

(SCHAEFER, PAWLOWSKI, WAMBACH '07)

⇒ fixed-point regime is relevant

▷ RG flow in the fixed-point regime:

▷ RG flow in the fixed-point regime:

solution in the fixed-point regime:

$$g^2(k) = g_*^2 - \left(rac{k}{\mu_0}
ight)^{|\Theta|}$$

> χ SB dynamics sets in at:

$$k_{
m cr} \simeq \mu_0 \, (g_*^2 - g_{
m cr}^2)^{rac{1}{|\Theta|}}$$

 \triangleright unified scale dependence of χ SB observables in QCD:

$$T_{\rm c}, f_{\pi}, \langle \bar{\psi}\psi \rangle^{1/3}, m_{c.q.}, \cdots \sim k_{\rm cr}$$

 \triangleright approx. proportionality $g_*^2 \sim N_{
m f}$

 \implies scaling relation:

(BRAUN, HG'06)

$$T_{
m c} \sim \mu_0 |N_{
m f} - N_{
m f,cr}|^{rac{1}{|\Theta|}}$$

4

Scaling Relation near the Conformal Window

(BRAUN, HG'06)

Scaling Relation near the Conformal Window

(BRAUN, HG'06)

- relates two universal quantities
- relates chiral structure to IR gauge dynamics
- parameter-free prediction

Scaling Relation near the Conformal Window

▷ generalizes to generic chiral observables O with mass dimension d_O :

(BRAUN, HG IN PREP.)

$$\mathcal{O} \sim |\textit{N}_{\rm f} - \textit{N}_{\rm f,cr}|^{rac{a_\mathcal{O}}{|\Theta|}}$$

e.g., $\mathcal{O} = T_{c}, f_{\pi}, \langle \bar{\psi}\psi \rangle, m_{c.q.}, \dots$

Many-Flavor QCD, Quantitatively ...?

Many-flavor QCD, Quantitatively ...?

LGT: (Kogut&Sinclair'88; Brown et al.'92; Iwasaki et al.'96; Damgaard et al.'97)

Many-Flavor QCD with Functional RG

▷ RG flow equation

(WILSON'71; WEGNER&HOUGHTON'73; POLCHINSKI'84; WETTERICH'93)

$$\partial_t \Gamma_k \equiv k \partial_k \Gamma_k = \frac{1}{2} \operatorname{Tr} \frac{1}{\Gamma_k^{(2)} + R_k} \partial_t R_k =$$

 \triangleright computation of effective action in a gauge-covariant derivative expansion: SU(N_c), SU(N_f)_L × SU(N_f)_R

$$\begin{split} \Gamma_{k} &= \int \frac{Z_{\mathsf{F}}}{4} F_{\mu\nu}^{z} F_{\mu\nu}^{z} + \dots + \bar{\psi} \left(\mathsf{i} Z_{\psi} \partial \!\!\!/ + Z_{1} \bar{g} A \!\!\!/ \right) \psi \\ &+ \frac{1}{2} \frac{\lambda_{\sigma}}{k^{2}} \left(\mathsf{S} \mathsf{-} \mathsf{P} \right) + \frac{1}{2} \frac{\lambda_{\mathsf{VA}}}{k^{2}} \left[2(\mathsf{V} \mathsf{-} \mathsf{A})^{\mathsf{adj.}} + (1/N_{\mathsf{c}})(\mathsf{V} \mathsf{-} \mathsf{A}) \right] \\ &+ \frac{1}{2} \frac{\lambda_{+}}{k^{2}} \left(\mathsf{V} \mathsf{+} \mathsf{A} \right) + \frac{1}{2} \frac{\lambda_{-}}{k^{2}} \left(\mathsf{V} \mathsf{-} \mathsf{A} \right) \end{split}$$

[[]cf. talks by B.J. Schaefer, J. Braun, J.M. Pawlowski]

Critical flavor number

▷ SU(3) "conformal phase" for

(HG, JAECKEL'05)

$$N_{
m f,cr} = 10.0 \pm 0.29 (
m fermion) {+1.55 \atop -0.63} (
m gluon) \lesssim N_{
m f} < 16.5$$

▷ error analysis includes:

- check for truncation dependencies (higher-derivative operators, higher-vertex operators, momentum dependencies, anomalous dimensions, ...)
- check for regulator and scheme dependencies

Chiral Phase Boundary $T - N_{\rm f}$

 \triangleright fixed-point regime: critical exponent Θ

$$eta_{g^2}\simeq -\Theta\left(g^2-g_*^2
ight)$$

▷ shape of the phase boundary for $N_{\rm f} \simeq N_{\rm f}^{\rm cr}$:

(BRAUN, HG'05, '06)

$$T_{
m c} \sim |N_{
m f} - N_{
m f,cr}|^{rac{1}{|\Theta|}}, \quad \Theta \simeq -0.60$$

Recent Results from the Lattice

 \triangleright *N*_f = 8, *N*_c = 3 QCD is in the χ SB phase:

(DEUZEMANN, LOMBARDO, PALLANTE'08; APPELQUIST, FLEMING, NEIL'08&'09)

(JIN, MAWHINNEY'09; FODOR, HOLLAND, KUTI, NOGRADI, SCHROEDER'09)

 \triangleright N_f = 9(rooted staggered), N_c = 3 QCD is in the χ SB phase:

(FODOR, HOLLAND, KUTI, NOGRADI, SCHROEDER'09)

 \triangleright N_f = 12, N_c = 3 QCD is in the conformal phase:

 \implies 9 < $N_{\rm f,cr} \le$ 12

Conclusions

▷ "conformal window" in many-flavor QCD:

$N_{ m f,cr} \simeq 10-12 \leq N_{ m f} < 16.5$ for SU(3)

... lessons on chiral structure ... quantum phase transition ... applications to walking technicolor

(DIETRICH ET AL.'06; TERAO ET AL.'07; SANNINO'09)

⊳ universal aspects:

shape of the phase boundary \iff IR critical exponent

- ▷ functional RG for $\Gamma[\phi]$
 - systematic and consistent expansion schemes for QCD
 - chiral symmetry
 - calculations "from first principles"

Chiral Criticality at Finite Temperature

⊳ quark modes:

$$m_{T}^{2} = m_{f}^{2} + (2\pi T(n + \frac{1}{2}))^{2}$$

$$\implies T \text{-dependent}$$
critical coupling:
$$\alpha_{cr}(T) \gtrsim \alpha_{cr} \simeq 0.85$$

$$g \geq g_{cr}$$

$$\gamma > 0, g = 0$$

$$g \geq 0$$

$$g \geq 0$$

$$\lambda_{i}$$

(BRAUN, HG'05)