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Figure 4: The difference of light and strange quark chiral condensates normalized to its zero temperature

value as defined in Eq. 3.5 (left) and the renormalized Polyakov loop expectation value (right). Shown are

results from simulations on Nτ 4 and 6 lattice obtained with the p4fat3 [21] action as well as preliminary

results for Nτ 8 obtained by the hotQCD Collaboration [8]. The upper axis shows the temperature in units

of the distance r0 extracted from the heavy quark potential. The lower temperature scale in units of MeV

has been obtained from this using r0 0 469 fm [20]. The vertical lines indicate a band of temperatures,

185MeV T 195MeV, which characterizes the transition region in the Nτ 8 calculations.

compared to results obtained with the 1-link, stout smeared staggered fermion action [6] as shown

in Fig. 3(right). The differences between the asqtad and p4fat3 calculations on the one hand and the

1-link, stout smeared calculations on the other hand arise from two sources. For small values of Nτ ,

the quark number susceptibilities calculated with 1-link staggered fermion actions overshoot the

continuum Stefan-Boltzmann result at high temperatures and reflect the strong cut-off dependence

of thermodynamic observables calculated with this action. This is well-known to happen in the

infinite temperature, ideal gas limit and influences the behavior of thermodynamic observables in

the high temperature phase of QCD (see footnote 3 and also Fig. 2 in [9]). On the other hand

the differences also arise from the different choice for the zero temperature observable used to set

the temperature scale. While the temperature scale in the asqtad and p4fat3 calculations has been

obtained from the static quark potential (the distance r0), the kaon decay constant has been used in

calculations with the 1-link, stout smeared action. Of course, this should not make a difference after

proper continuum extrapolations have been carried out. At finite values of the cut-off, however, one

should make an effort to disentangle cut-off effects in thermodynamic observables from cut-off

effects that only arise from a strong lattice spacing dependence in a zero temperature observable

that is used to define a temperature scale. In this respect, the scale parameter r0 extracted from the

heavy quark potential is a safe quantity which is easy to determine; it has been studied in detail and

its weak cut-off dependence is well controlled [21, 24].

Let us now turn our attention to observables sensitive to chiral symmetry restoration which,

of course, is signaled by changes in the chiral condensate (Eq. 3.1). This also is reflected in pro-

nounced peaks in the light quark chiral susceptibility as shown in Fig. 2. As the chiral condensate

receives additive as well as multiplicative renormalization, one should look at appropriate combi-

nations that eliminate the renormalization effects. An appropriate choice is to subtract a fraction of

the strange quark condensate from the light quark condensate and normalize the finite temperature
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Eqs. (2.13) and (2.19), one can write F(0) = σ̄/G and I2(−m2
π) = 1/G. Then one obtains from

Eq. (2.23)
m2

πfπ = mqgπqq I1(−m2
π) . (2.24)

A Taylor expansion about the chiral limit of the pion polarization term, Eq. (2.11), leads to

F−(p2) = F−(0) +
∂F−

∂p2

∣∣∣∣
p2=0

p2 + O(p4) = F−(0) + g−2
πqq p2 + O(p4) .

Using this in the conditional equation for the pion mass, F−(−m2
π) = 0, one recovers the leading

order contribution to m2
π:

m2
π =

g2
πqq

σ̄
mqI1 + O(m4

π) = g2
πqqF

−(0) + O(m4
π) . (2.25)

Finally, combining Eqs. (2.11) and (2.16) gives

F−(0) = −mq

σ̄2
〈ψ̄ψ〉 + O(m2

q) .

From Eq. (2.24) and the first equality of Eq. (2.25) one finds

fπgπqq = σ̄ + O(mq) , (2.26)

which, in the chiral limit, i. e. for mq = 0, is nothing but the Goldberger–Treiman relation.
Using this relation, the second equality of Eq. (2.25) together with the expression for F−(0)
derived above gives

m2
πf2

π = −mq〈ψ̄ψ〉 + O(m2
q) , (2.27)

which is the well-known Gell-Mann–Oakes–Renner relation. We have thus demonstrated that
the non-local NJL model preserves chiral low-energy theorems and current algebra relations at
the level of constituent quarks as quasiparticles.

2.6 Determination and fixing of the distribution C(p)

The Fourier transform C(p) of the non-locality distribution introduced in section 2.1 is a key
quantity and the basic input of the present approach. QCD constraints are used to determine
C(p), both in the high-p (perturbative) and low-p (non-perturbative) regions, as follows.

2.6.1 Quark self-energy at large momentum

Consider a quark propagating with large (Euclidean) momentum p in the QCD vacuum. Its
self-energy Σ(p) is given pictorially as

−iΣ(p) = , (2.28)

with full quark and gluon propagators and vertex functions3. At high momentum, this self-
energy can be evaluated recalling its operator product expansion and identifying the leading
O(p−2) term [21, 22].

It is well known that QCD perturbation theory at any order does not generate a non-zero
quark mass term starting from a massless quark, simply as a consequence of helicity conservation

3In a self-consistent Schwinger-Dyson approach a filled circle denotes a fully dressed propagator and an open
circle a one-particle irreducible vertex.
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Λ GΛ2 HΛ5 mu ms

0.846GeV 19.84 −581.19 3.0MeV 70MeV

Table 1: Values determining the parameters of the Nc = 3 and Nf = 3 nonlocal NJL model.

〈ūu〉 = 〈d̄d〉 〈s̄s〉 Mu = Md Ms

−(0.304GeV)3 −(0.323GeV)3 468MeV 694MeV

mπ mK mη mη′ fπ fK θη θη′

139MeV 495MeV 547MeV 964MeV 92.8MeV 110.1MeV 1.9◦ −22.3◦

Table 2: Calculated physical quantities using the parameters of Table 1.

2.3.6 Paramter fixing and numerical results

Having all the formulae of the last sections at our disposition we can now determine the model
parameters by fixing them such that the physical values for the pion mass mπ = 139MeV,
the kaon mass mK = 495MeV, the η-mass mη = 547MeV and the pion decay constant fπ =
92MeV are reproduced. Using the momentum distribution function C of Eq. (2.6) and choosing
the parameters as given in Table 1, we obtain the values of the pseudoscalar masses3, decay
constants and η-η′-mixing angle as shown in Table 2. The current masses are consistent for
a renormalization scale of roughly 2GeV. The η′ mass is very close to its experimental value
the same as the ratio of the decay constants fK/fπ = 1.19 (compared to the experimental
(fK/fπ)exp = 1.22).

In Fig. 3 we show the momentum dependence of the resulting dynamical up-quark mass,
Mu(p), compared to lattice data from Ref. [39].

Finally, a comparison to the local NJL model is in order. From Ref. [13] one obtains the gap
equations

Mu = mu − G̃〈ūu〉 −
H̃

2
〈ūu〉〈s̄s〉

Ms = ms − G̃〈s̄s〉 −
H̃

2
〈ūu〉2.

The coupling strengths G̃ and H̃ of the local model can be calculated by comparison with
Eq. (2.21a) to the coupling strengths G and H of the nonlocal model; one obtains G̃ = G S̄u

〈ūu〉 ≈
11GeV−2 and H̃ = H S̄uS̄s

〈ūu〉〈s̄s〉 ≈ 310GeV−5 that correspond to values that lie in the ballpark of

the typical local models Refs. [13, 9, 10, 11, 12].

2.4 Low energy theorems

In this last subsection we are going to derive the Goldberger–Treiman and Gell-Mann–Oakes–
Renner relations explicitly from the nonlocal NJL model presented in this work. For this aim,
we expand the meson selfenergy contribution Π−

uu, Eq. (2.29), up to first order in the current
quark mass mu and the momentum p2, obtaining

Π−
uu(p2,m) =

S̄u,0

σ̄u,0
−

2〈ūu〉0
σ̄2

u,0

m + Z−1
π,0p

2. (2.43)

3Note, that the ūu-threshold is smaller than the η′ mass. Hence, the integrals defining the η′-mass might be
ill-defined owing to poles in the integration region. Therefore, in fixing the η′-mass, we apply the regularization
method described in Refs. [30, 2].
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where we have introduced

φα(p) =

∫
d4x e−ip·xϕα(x) .

Eq. (2.6) involves the momentum space representation of the operator Â, as follows:

A(p, p′) := 〈p|Â|p′〉 =
(
−/p + mq

)
(2π)4δ(4)(p − p′) + C̃

(
p + p′

2

)
Γα Re

[
φα(p − p′)

]
, (2.7)

with

C̃(p) =

∫
d4z e−ip·x C(z) .

We use the notation C(p) =: C̃(p) for simplicity and note that C(p = 0) = 1. Details of the
bosonization procedure are given in Appendix A.

2.2 Mean field approximation and beyond

Next, assume that in the homogeneous and isotropic vacuum, the scalar σ field has a nonzero
expectation value σ̄ = 〈σ〉, while the vacuum expectation values of the pseudoscalar fields πi are
zero. We write σ(x) = σ̄ + δσ(x), 'π(x) = δ'π(x) and expand the bosonized action (2.6) around
the mean field in powers of the mesonic fluctuations δσ, δ'π:

Sbos
E = SMF

E + S(2)
E + . . . (2.8)

The mean field contribution per four-volume V (4) is given by

SMF
E

V (4)
= −2NfNc

∫
d4p

(2π)4
ln

[
p2 + M2(p)

]
+

σ̄2

2G
, (2.9)

with
M(p) = mq + C(p) σ̄ . (2.9a)

The quadratic terms beyond mean field approximation are derived explicitly in Appendix B.
Here we only state the result:

S(2)
E =

1

2

∫
d4p

(2π)4
[
F+(p2) δσ(p) δσ(−p) + F−(p2) δ'π(p) · δ'π(−p)

]
, (2.10)

where

F±(p2) =
1

G
− 4NfNc

∫
d4q

(2π)4
C(q)C(q + p)

q · (q + p) ∓ M(q)M(q + p)
[
q2 + M2(q)

][
(q + p)2 + M2(q + p)

]

=
1

G
−

q + p

q

.

(2.11)

The loop diagram involves the fermion (quark) quasiparticle propagators (in Euclidean space1)

SF(p) = =
1

−/p + M(p)
(2.12)

with the momentum-dependent constituent quark mass M(p) (cf. Sect. 2.6).

1We use the convention p4 := ip0, γ4 = iγ0.

4

k

p + k

p

Beyond Mean Field:  Mesonic Excitations

contribution of mesonic quark-antiquark modes to pressure

mesons T. Hell,  S. Rössner,  
M. Cristoforetti,  W. W. 

(2009) 

bution to the pion self-energy Ππ,σ(νm, #p ) (where νm = 2πmT,m ∈ Z is the bosonic Matsubara
frequency and #p the momentum of the incoming pion or sigma), depicted in Eq. (2.11), at finite
temperature. Using the rules (3.10) we end up with

Ππ,σ(νm, #p ) = 4Nf

∑

i=0,±

T
∑

n∈Z

∫
d3k

(2π)3
C(ωi

n + νm,#k + #p ) C(ωi
n,#k )×

× ωi
n(ωi

n + νm) + #k(#k + #p ) ± M(ωi
n + νm,#k + #p )M(ωi

n,#k )[
(ωi

n + νm)2 + (#k + #p )2 + M(ωi
n + νm,#k + #p )2

] [
(ωi

n)2 + #k 2 + M i(ωi
n,#k )2

] ,

(3.14)
where ω±

n = ωn ± A4,ω0 = ωn and M(ωn, #p ) = mq + C(ωn, #p )σ̄.
At temperatures above Tc the interaction of instable meson modes with the thermal quark-

antiquark continuum produces an additional pressure contribution that is given by a ring sum
of RPA chains, investigated in Ref. [35] and leading to the expression

Pmeson(T ) = −
∑

M=π,σ

dM

2
T

∑

m∈Z

∫
d3p

(2π)3
ln [1 − GΠM (νm, #p )] , (3.15)

where dM is the mesonic degeneracy factor, i. e. dπ = 3, dσ = 1.
Due to the momentum dependence of the non-locality distribution C(p) and the dynamical

quark mass M(p), integrations and summations in Eqs. (3.14) and (3.15) can only be carried
out numerically.

Results for the pressure in the presence of pion and sigma mesonic modes are presented
in Fig. 4. Apart from the full result (solid line) we additionally show the mean-field result
(with the pressure determined by quark quasiparticles only) and the mean-field result plus pion
contributions. It is evident that at low temperatures the mean-field contribution stemming
from the quarks is suppressed and the pressure can be described by a free pion gas. Near the
critical temperature the sigma mesonic mode gives an additional contribution. Finally, above
temperatures T > 1.5Tc the mesonic contributions become negligible and the quark-gluon mean-
fields dominate the pressure.

Finally, in Fig. 5 we show a comparison of the pressure calculated with the physical pion
(mπ = 140MeV) and with a “heavy” pion (mπ = 500MeV) corresponding to a quark mass of
order mq ∼ 100MeV that has frequently been used in earlier lattice QCD computations. In this
case the mesonic contributions to the pressure are evidently reduced. This explains the apparent
agreement of lattice data with mean field calculations.

3.6 Related thermodynamic quantities

Given the partition function (or the thermodynamical potential Ω) we can further investigate
the energy density, ε, the trace anomaly (ε − 3P )/T 4 and the sound velocity vs. In particular,
the trace anomaly is of interest here since it is the quantity which can be directly computed
in lattice simulations (Ref. [10]). The trace anomaly, corresponding to the trace of the energy-
momentum tensor, is the “interaction measure” which – using thermodynamical relations – can
be expressed in terms of a derivative of the pressure with respect to temperature:

ε − 3P

T 4
= T

∂

∂T

(
P

T 4

)
.

A further interesting quantity is the ration of pressure and energy density. Finally, the square
of the sound velocity (at constant entropy S) can be deduced according to

v2
s =

∂P

∂ε

∣∣∣∣
S

=
∂P
∂T

∣∣
V

T ∂2P
∂T 2

∣∣∣
V

,
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In the case of the fourth order moments of the pressure we have practically no volume dependent contribution.
Lattice data agree well with Monte-Carlo PNJL results for temperatures around and above Tc. In the region below
the critical temperature, a significant contribution is still missing, in particular for the non-diagonal coefficient. This
could be related to the absence of propagating mesons like pions and sigma in the model.
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Figure 11: (Normalized) chiral order parameter σ̄/σ̄0 shown in the (T, µ) plane. For small
chemical potentials a crossover transition is manifest. For large chemical potentials a first order
phase transition is apparent which terminates in the critical point (CEP) at (TCEP, µCEP) =
(167MeV, 175MeV).

critical point but also for the mere existence of a first-order phase transition. Secondly, the
almost constant behavior of σ̄(T = 0, µ) with increasing chemical potential is unrealistic in the
absence of explicit baryon (nucleon) degrees of freedom including their interactions.

What is actually required as a starting point for extensions to non-zero chemical potential
is a realistic equation of state at finite baryon density, incorporating the known properties of
equilibrium and compressed nuclear matter. In such a framework, the density dependence of
the chiral condensate 〈ψ̄ψ〉 (or of the scalar field σ̄) is well known to be quite different from
the profile shown in Fig. 11. the magnitude of 〈ψ̄ψ〉 decreases linearly with density ρ, with a
slope controlled by the pion-nucleon sigma term, and then stabilizes at densities above normal
nuclear matter through a combination of two- and three-body correlations and Pauli blocking
effects (see e. g. Ref. [37]).

Irrespective of these comments, the non-local PNJL approach is obviously instructive in
modeling the chiral and deconfinement thermodynamics at µ = 0. Dealing with finite baryon
density requires ultimately yet another synthesis, namely that of PNJL and in-medium chiral
effective field theory with baryons.

4 Summary and conclusions

A non-local generalization of the two-flavor PNJL model, a synthesis of Polyakov loop dynamics
with the Nf = 2 Nambu and Jona-Lasinio model, has been derived with the aim of identifying
dominant quasiparticle deegrees of freedom and developing insight into the symmetry breaking
scenario of QCD thermodynamics. This non-local approach has the principal advantage that it
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Fig. 2: Trajectory of the temperature TCP of the critical point
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Fig. 3: Trajectory of the chemical potential µCP of the critical
point as a function of the strange-quark current mass ms.

is significant. Increasing K – and with it the strength
of the axial anomaly – shifts the critical point towards
lower chemical potential and thus enlarges the first-order
phase transition. On the other hand, lowering K drives
the critical point down in the phase diagram, shorten-
ing the first-order phase transition line. By changing K

substantially, it is even possible to eliminate the criti-
cal point completely from the phase diagram. This af-
firms the message of fig. 17 in reference [6], where another
approach to the Polyakov loop effective potential and a

240 280 320

0

40

80

120

160

200

Μ !MeV"

T
!M
e
V
"

K !0.5 K 0

K !0.525 K 0

K !0.55 K 0

K !0.6 K 0

K !0.7 K 0

K !0.8 K 0

K ! 0.9 K 0

K ! K 0

K !1.2 K 0

K !1.4 K 0

Fig. 4: Trajectory of the location of the critical point as a
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fixing.

different parameter set was used. Thus the qualitative
interpretation is largely independent of these details.

In this work, diquark degrees of freedom were
neglected. It is expected that including color-
superconducting phases in the model further influences
the critical point significantly.
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PNJL model vs. Lattice QCD Thermodynamics

p = −Ω(T, µ = 0)

PRESSURE and ENERGY DENSITY at zero chemical potential

interaction
measure
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Figure 1. The trace anomaly, (ε − 3p)/T 4 (left) calculated on lattices with temporal
extent Nτ = 6, 8 and the ratio of pressure and energy density as well as the velocity
of sound obtained in calculations with the p4fat3 action on Nτ = 6 (short dashes) [3]
and 8 (long dashes) [7]. The temperature scale has been obtained from an analysis of
the heavy quark potential from which the Sommer scale parameter has been extracted.
Its value has been fixed to r0 = 0.469 fm.

performed with physical values for the strange quark mass and two degenerate light

quark masses that correspond to a pion mass of about 220 MeV.

2. The QCD equation of state

Systematic studies of the QCD EoS are currently performed with two different versions

of improved discretization schemes for staggered fermions, the asqtad and p4fat3 actions.

Both actions are constructed such that they remove in the high temperature limit O(a2)

lattice discretization errors in bulk thermodynamic observables and reduce explicit

flavor symmetry breaking effects through the introduction of so-called fat links. In
the construction of these actions different strategies have been followed to deal with

these lattice artefacts. Both actions have been used for some time to study the QCD

equation of state on lattices with temporal extent Nτ = 4 and 6 [2, 3]. In a joint effort

the hotQCD collaboration currently extends the studies of the EoS with these actions

to lattices with temporal extent Nτ = 8 [8, 9]. Like in the earlier calculations performed

with the p4fat3 action large spatial lattices are used (Nσ = 4Nτ ) to get close to the
thermodynamic limit.

In Fig. 1 (left) we show results for the trace anomaly, Θµµ ≡ ε − 3p in units of T 4.

The figure shows results from calculations performed on lattices with temporal extent

Nτ = 6 and 8 using the asqtad as well as the p4fat3 actions. It can be seen that both

discretization schemes lead to quite good agreement in a wide range of temperatures;

although a closer inspection shows still a cut-off dependence of the results. They lead
to a reduction of the peak height in Θµµ/T 4, which is located at T # 200 MeV, and

lead to a shift of the rapidly rising part of Θµµ/T 4 in the transition region to smaller

values of the temperature.

Cut-off effects as well as differences arising from both discretization schemes seem

lattice data:   
 F. Karsch  et al. :  arXiv:0804.4148 [hep-lat]
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Figure 6: Trace anomaly (ε − 3P )/T 4 shown
as a function of temperature for the mean field
case and with mesonic correlations added.
For orientation, lattice data are shown from
Ref. [12].
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Figure 7: Comparison of the energy density
ε as a function of temperature for the mean
field case and with mesonic correlations.
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Figure 8: Fraction of pressure and energy den-
sity P/ε as a function of 4th root of the energy
density ε1/4.
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Figure 9: Squared sound velocity v2
s as a func-

tion of 4th root of the energy density ε1/4.

modeling the chiral and deconfinement thermodynamics at µ = 0. Dealing with finite baryon
density requires ultimately yet another synthesis, namely that of PNJL and in-medium chiral
effective field theory with baryons.

4 Summary and conclusions

A nonlocal generalization of the two-flavor PNJL model, a synthesis of Polyakov loop dynamics
with the Nf = 2 Nambu and Jona-Lasinio model, has been derived with the aim of identifying
dominant quasiparticle deegrees of freedom and developing insight into the symmetry breaking
scenario of QCD thermodynamics. This nonlocal approach has the principal advantage that it
does not require the momentum space cutoff typical of NJL type models with local four-fermion
couplings. The nonlocality of the interaction generates a momentum dependent dynamical
quark mass, M(p). Important QCD constraints can now be directly implemented, e. g. through
results from Landau gauge Dyson-Schwinger or lattice QCD calculations, or in contact with the
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Figure 8: The speed of sound (solid) and the ratio of pressure over energy density (dashed)
at vanishing chemical potential as function of temperature (left panel). The right panel
shows the same quantities at a quark chemical potential slightly less than the one at the
critical point (µ = 0.3GeV ! µcrit ! 0.31GeV).

widths for decay into qq̄ grow continously. This implies that at temperatures exceeding
Tc both π and σ modes become thermodynamically irrelevant while correlated quark-
antiquark pairs carrying the quantum numbers of π and σ can still be active above Tc.
One therefore expects that the corrections to the pressure from propagating pions and
sigmas should be concentrated around Tc. These mesonic modes are colour singlets14.
Thus their statistical weight is much smaller than the weight of the deconfined quark
quasiparticles.

5.1 Derivation of meson propagators from the PNJL model

We start from the derivation of mesonic propagators in the PNJL model as performed,
for example, in [25]. We generalise Eq. (27), where the momentum argument of the fields
is suppressed as it has been implied that ξ = ξ(qµ = 0). We release this limitation and
calculate the momentum dependent propagator

j k

qµ

=

[

∂2Sbos

∂ξj(qµ)∂ξk(−qµ)

]−1

, (48)

where ξ now stands for the pion or sigma fields. Note that the functional trace in the
formula for Sbos ensures momentum conservation, such that the sum of the momentum
arguments in the denominator always vanishes. The calculation can be done numerically
as it was done in the previous section. Alternatively, we use an analytic approach as
follows. Recall some useful formulae also exploited in Refs. [6, 8]:

∂ ln det M

∂x
= tr

[

M−1 ∂M

∂x

]

and
∂M−1

∂x
= −M−1 ∂M

∂x
M−1 , (49)

14Colour octet quark-antiquark modes turn out to be very heavy and are far removed from the spectrum
of active degrees of freedom.
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Figure 4: The ratio p/! as function of the fourth root of the energy density obtained from calculations with
the p4fat3 action on lattices with temporal extentN" = 4 and 6. Also shown is the velocity of sound extracted
from a fit to p/! [6] and using Eq. 2.2.The dashed curve at low energies shows the results for p/! calculated
in a hadron resonance gas model (HRG).

with simulations that have been performed with the asqtad action on a smaller physical volume,

V 1/3T = 2 [5]. Results from the latter calculation are also shown in Fig. 3. The asqtad action

has quite a different cut-off dependence at high temperature, it uses non-perturbatively improved

(tadpole) couplings and also incorporates a more sophisticated smearing of 1-link terms in the

staggered action to reduce flavor symmetry breaking effects. The good agreement between asqtad

and p4fat3 simulations thus suggests that these features only play a minor role in the common

temperature range explored in both calculations, 150MeV<
∼T

<
∼400MeV.

The results shown in Fig. 3 have been obtained in calculations with a physical strange quark

mass and light quark masses that are about (2-2.5) times larger than in nature. This difference is of

no significance at high temperature as the quark masses are small in units of the temperature3. It

may, however, play a role in the low temperature hadronic phase. From the experience gained in

simulations with different light quark masses [7, 8] it is to expected that the region of sudden rise

in the trace anomaly as well as the entropy density shifts to somewhat smaller temperatures in the

case of physical quark mass values. Cut-off effects will lead to a similar effect. This deserves a

further careful analysis (see also disccusion in part II [11]).

2.2.2 Equation of state and velocity of sound

For the description of the expansion of dense matter created in heavy ion collisions, in partic-

ular its hydrodynamic modeling, the temperature dependence of bulk thermodynamic observables

is not of direct interest. It is more relevant to get good control over the dependence of the pressure

on the energy density, p(!), and deduce from this the velocity of sound,

c2s =
dp

d!
= !

dp/!

d!
+
p

!
. (2.2)

3The renormalization group invariant light quark mass for the calculations performed with the p4fat3 action has

been estimated to be mRGI = 8.0(4) MeV [6].
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Figure 9: Comparison between the results in the PNJL model (solid line) and in the standard
NJL model (dashed line) for the quark number density at µ = 102 MeV. The effect of the lack of
confinement is evident in the standard NJL model.

It is instructive to study the effect of the Polyakov loop dynamics on the be-
haviour of the quark density nq. The coupling of the quark quasiparticles to the
field Φ reduces their weight as thermodynamically active degrees of freedom when
the critical temperature Tc is approached from above. At Tc the expectation value
of Φ tends to zero and the quasiparticle exponentials exp[−(Ep ± µ̃)/T ] are progres-
sively suppressed in the thermodynamic potential as T → Tc. This is what can be
interpreted as the impact of confinement in the context of the PNJL model. In con-
trast, the standard NJL model without coupling to the Polyakov loop does not have
this important feature, so that the quark density leaks strongly into the ”forbidden”
domain T < Tc # 170 MeV, as demonstrated in Fig. 9.

6 Summary and conclusions

We have studied a Polyakov-loop-extended Nambu and Jona-Lasinio (PNJL) model
with the aim of exploring whether such an approach can catch essential features
of QCD thermodynamics when confronted with results of lattice computations at
finite temperature and quark chemical potential. This PNJL model represents a
minimal synthesis of the two basic principles that govern QCD at low temperatures:
spontaneous chiral symmetry breaking and confinement. The respective order pa-
rameters (the chiral quark condensate and the Polyakov loop) are given the meaning
of collective degrees of freedom. Quarks couple to these collective fields according
to the symmetry rules dictated by QCD itself.

Once a limited set of input parameters is fitted to Lattice QCD in the pure gauge
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8 3.3 Modellierung von Phasenübergängen

Abbildung 2: Die chirale Suszeptibilität
χM und die Polyakov loop Suszeptibilität
χRe Φ und χΦ als Funktionen der Tempera-
tur.

Abbildung 3: Vergleich der Quotienten der
Kumulanten R

q
4,2 wie sie aus dem PNJL

Modell und aus Gitter-QCD4 folgen.

gen. Jedoch kann das PNJL Modell nicht alle Eigenschaften der QCD korrekt be-
schreiben. So sind die Eigenschaften der Mesonen im PNJL Modell ausgewertet in
der so genannten Random Phase Approximation (RPA) im Hinblick auf das Farb-
confinement nur unzureichend wiedergegeben. Man muss sich also auf das Studium
thermodynamischer Größen beschränken. Um weitere Meson Eigenschaften besser
zu modellieren, sind nicht-lokale Erweiterungen vielversprechende Ansätze.

3.3 Modellierung von Phasenübergängen

Betrachtet man das Phasendiagramm der QCD und dessen Abhängigkeit von der
Stromquarkmasse, so stellt man fest, dass sich der chirale Grenzfall in der Nähe
des physikalischen Phasendiagramms befindet. In diesem chiralen Grenzfall, d. h.
bei verschwindender Stromquarkmasse, verwandelt sich der crossover Übergang bei
niedrigen Dichten und hohen Temperaturen in einen echten Phasenübergang. Auch
auf Grund von PNJL Modellrechnungen geht man davon aus, dass dieser Übergang
zweiter Ordnung ist. Phasenübergänge zweiter Ordnung werden von divergierenden
Fluktuationen und Suszeptibilitäten begleitet. Die Überbleibsel dieser Divergenzen
sind auch in der kritischen Region noch erkennbar. Da die physikalisch realisierten
Quarkmassen klein sind, wird erwartet, dass der crossover Übergang mit Hilfe von
Suszeptibilitäten und verwandter Größen lokalisiert werden kann. Auch das PNJL
Modell stützt dieses Bild: Abbildung 2 zeigt scharfe Maxima der Suszeptibilitäten,
Abbildung 3 zeigt ein Maximum des Quotienten der Kumulanten Rq

4,2 = d4/d2 =
12 c4/c2 im Temperaturbereich in dem der Phasenübergang erwartet wird.

Abbildung 3 zeigt darüberhinaus, dass der neuartige Ansatz zur Behandlung des
FSP entscheidende Verbesserungen in der Beschreibung der Kumulanten mit sich
bringt. Die Rechnung mit Korrekturen (durchgezogene Linie) zeigt bei niedrigen
Temperaturen deutlich höhere Werte, als die reine Mean Field Analyse (unterbroche-
ne Linie), und ist damit sowohl in Übereinstimmung mit qualitativen Argumenten
als auch mit Gitter-QCD-Rechnungen. Im Folgenden Abschnitt wird darüberhinaus

Cumulant Ratios

Example:   quark number cumulant ratio R
q
4,2 =

12 c4

c2

6/π2
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