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Phase Transitions in Quantum Chromodynamics QCD
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probed by heavy-ion collisions at GSI, Darmstadt (FAIR!)
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QCD Equation of State as Input in Astrophysics

supernovae simulations: T = 1–50 MeV, n = 10−10–2n0

proto-neutron star: T = 1–50 MeV, n = 10−3–10n0

global properties of neutron stars: T = 0, n = 10−3–10n0

neutron star mergers: T = 0–175 MeV, n = 10−10–10n0
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Outline

Introduction: Pulsars, neutron stars and quark stars

Connecting the QCD phase diagram with the cosmos:

QCD phase transition in neutron stars
QCD phase transition in supernovae
QCD phase transition in the early universe

Summary and Outlook
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Introduction: Pulsars, neutron stars and quark stars
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Neutron Stars

produced in core collapse
supernova explosions

compact, massive objects:
radius ≈ 10 km, mass
1 − 2M⊙

extreme densities, several
times nuclear density:
n ≫ n0 = 3 · 1014 g/cm3

in the middle of the crab
nebula: a pulsar, a rotating
neutron star!
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Masses of Pulsars (Stairs, 2006)

>1700 pulsars known

best determined mass:

M = (1.4414 ± 0.0002)M⊙

for the Hulse-Taylor pulsar

(Weisberg and Taylor, 2004)

mass of PSR J0751+1807

corr. from

M = (2.1 ± 0.2)M⊙ to

M = (1.14 − 1.40)M⊙

(Nice et al. 2008)

mass of PSR J1903+0327

(not finalized yet):

M = (1.67 ± 0.01)M⊙

(Freire et al. 2009) – p.7



Constraints on the Mass–Radius Relation (Lattimer and Prakash (2004))

spin rate from PSR B1937+21 of 641 Hz: R < 15.5 km for M = 1.4M⊙

Schwarzschild limit (GR): R > 2GM = Rs

causality limit for EoS: R > 3GM
– p.8



QCD Phase Transition in Neutron Stars
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Structure of a Neutron Star — the Core (Fridolin Weber)
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Pure quark(yonic) stars
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green curves: MIT bag model
(Witten 1984,
Haensel, Zdunik, Schaeffer 1986,
Alcock, Farhi, Olinto 1986,
see also Baym and Chin 1976)

blue curves: perturbative QCD
calculations to O(α2

s)

(Freedman and McLerran 1978,
Fraga, JSB, Pisarski 2001)

case Λ = 2µ: Mmax = 1.05 M⊙, Rmax = 5.8 km, nmax = 15 n0

case Λ = 3µ: Mmax = 2.14 M⊙, Rmax = 12 km, nmax = 5.1 n0

other nonperturbative approaches: Schwinger–Dyson model (Blaschke et al.),
massive quasiparticles (Peshier, Kämpfer, Soff), NJL model (Hanauske et al.),
HDL (Andersen and Strickland), . . .

note: pure quark stars can be very similar to ordinary neutron stars!
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A Quark Star? (NASA press release 2002)

NASA news release 02-082:
“Cosmic X-rays reveal evidence for new form of matter”

— a quark star?
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X-Ray burster EXO 0748–676 and Quark Matter
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analysis of Özel (Nature 2006): M ≥ 2.10 ± 0.28M⊙ and R ≥ 13.8 ± 1.8 km,
claims: ’unconfined quarks do not exist at the center of neutron stars’!

reply by Alford, Blaschke, Drago, Klähn, Pagliara, JSB (Nature 445, E7
(2007)): limits rule out soft equations of state, not quark stars or hybrid stars!

multiwavelength analysis of Pearson et al. (2006): data more consistent with
M = 1.35M⊙ than with M = 2.1M⊙
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Matching to low density EoS

massless
quarks

hadrons  /  

massive quarks

µ
min µ χ µ

Two possibilities for a first-order chiral phase transition:

A weakly first-order chiral transition (or no true phase transition),
=⇒ one type of compact star:
hybrid stars masquerade as neutron stars

A strongly first-order chiral transition
=⇒ two types of compact stars:
a new stable solution with smaller masses and radii
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Hybrid Stars in the effective mass bag model

(Schertler et al. (2000))
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three phases possible: hadronic, mixed phase and pure quark phase

composition depends crucially on the parameters as the bag constant B

(and on the mass!)
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Quark star twins? (Fraga, JSB, Pisarski 2001)
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Quark phase dominates (n ∼ 15 n0 at the center), small hadronic mantle
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Third Family of Compact Stars (Gerlach 1968)

(Glendenning, Kettner 2000; Schertler, Greiner, JSB, Thoma 2000)

R

M=M �
stable modesinstable modes

third family neutron stars white dwarfsA
B

CDE
FG H

I
third solution to the TOV equations besides white dwarfs and neutron stars,
solution is stable!

generates stars more compact than neutron stars

possible for any first order phase transition!
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Signals for a Third Family/Phase Transition?

spontaneous spin-up of pulsars (Glendenning, Pei, Weber, 1997)

mass-radius relation: rising twins (Schertler et al., 2000)

collapse of a neutron star to a quark star? (gravitational waves,
γ-rays, neutrinos)

r-mode instabilities: millisecond pulsars, gravitational wave burst
(Drago, Pagliara, Berezhiani, 2006), . . .

gamma-ray bursts with late x-ray emission, long quiescent times
(Drago and Pagliara, 2007), . . .

gravitational waves from neutron star mergers

secondary shock wave in supernova explosions?

– p.18



QCD phase transition in supernovae

Irina Sagert, Matthias Hempel, Giuseppe Pagliara, JSB, Tobias
Fischer, Anthony Mezzacappa, Friedel Thielemann, Matthias

Liebendörfer, PRL 102, 081101 (2009)
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Supernova Explosions

(Liebendörfer et al.)
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Improved Models of Stellar Core
Collapse and Still no Explo-
sions: What is Missing? (Buras,
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’. . . the models do not explode. This suggests missing physics, possi-

bly with respect to the nuclear equation of state . . . ’ !
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Supernova Explosions

(Liebendörfer et al.)

accretion
flow

PNS
hot,

shock-
heated
matter

(S. C. Whitehouse et al.)

entropy electron fraction

low Ye from
first neutro-
nisation burst

standing accretion
shock

second
shock

stars with a mass of more than
8 solar masses end in a (core
collapse) supernova (type II)

new generation of simulation
codes: 3D, Boltzmann neutrino
transport

Improved Models of Stellar Core
Collapse and Still no Explo-
sions: What is Missing? (Buras,
Rampp, Janka, Kifonidis, PRL
2004)

SASI: standing accretion shock instability, the models do explode after

600ms! (Marek and Janka, 2009)
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Phase Transition to Quark Matter for Astros
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quark matter appears at low density due to β-equilibrium

low critical density for low protn fraction (Yp) due to nuclear asymmetry energy

quark matter favoured at finite temperature

supernova matter at bounce: T = 10 − 20 MeV, Yp = 0.2 − 0.3, ǫ ∼ (1 − 1.5)ǫ0
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Phase Transition to Quark Matter for Astros
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(Irina Sagert and Giuseppe Pagliara)

quark matter appears at low density due to β-equilibrium

low critical density for low protn fraction (Yp) due to nuclear asymmetry energy

quark matter favoured at finite temperature

supernova matter at bounce: T = 10 − 20 MeV, Yp = 0.2 − 0.3, ǫ ∼ (1 − 1.5)ǫ0

production of quark matter in supernovae at bounce possible!
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Check: Mass-Radius Diagram of Cold Neutron Stars
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presence of quark matter can change drastically the mass-radius diagram

third family of solution for certain bag constants

maximum mass: 1.56M⊙ (B1/4 = 162 MeV), 1.5M⊙ (B1/4 = 165 MeV)
– p.22



Check: Phase Transition for Heavy-Ion Collisions
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no β-equilibrium (just up-/down-quark matter)

large critical densities in particular for isospin-symmetric matter
(proton fraction Yp = 0.5)

production of ud-quark matter unfavoured for HICs at small T and high density

no contradiction with heavy-ion data! – p.23



Implications for Supernovae – Explosion!
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(Sagert, Hempel, Pagliara, JSB, Fischer, Mezzacappa, Thielemann, Liebendörfer, 2009)

velocity profile of a supernova for different times (around 250ms)

formation of a core of pure quark matter produces a second shock wave
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Implications for Supernovae – Explosion!
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Implications for Supernovae – Explosion!
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(Sagert, Hempel, Pagliara, JSB, Fischer, Mezzacappa, Thielemann, Liebendörfer, 2009)

velocity profile of a supernova for different times (around 250ms)

formation of a core of pure quark matter produces a second shock wave

leads to an explosion!
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Implications for Supernova – Neutrino-Signal!
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(Sagert, Hempel, Pagliara, JSB, Fischer, Mezza-

cappa, Thielemann, Liebendörfer, 2009)

temporal profile of the emitted

neutrinos out of the supernova

thick lines: without, thin lines:

with a phase transition

pronounced second peak of

anti-neutrinos due to the

formation of quark matter

peak location and height deter-

mined by the critical density and

strength of the QCD phase tran-

sition!!
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QCD phase transition in the early universe
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History of the early universe

Early universe: temperature increases with scale parameter as a−1

at t = 1s to 3 minutes: BBN (T = 0.1 to 1 MeV)

at t ≈ 10−5s: QCD phase transition (T ≈ 170 MeV)

at t ≈ 10−10s: electroweak phase transition (T ≈ 100 GeV) – p.27



Standard cosmology

from microwave background radiation and big bang nucleosynthesis:

nB/s ∼ nB/nγ ∼ µ/T ∼ 10−9

note: baryon number per entropy is conserved
=⇒ early universe evolves along µ ∼ 0

=⇒ crossover transition, nothing spectacular, no cosmological signals
Friedmann equation for radiation dominated universe:

H2 =
8πG

3
ρ ∼ g(T )

T 4

M 2
p

g(T ): effective number of relativistic degrees of freedom at T

Hubble time (true time t = 3tH for radiation dominated universe):

tH =
1

H
∼ g−1/2

MP

T 2
=⇒

t

1 sec
∼

(

1 MeV
T

)2

– p.28



A little inflation at the QCD phase transition

what happens if the early universe passes through a first order phase
transition?

is this possible? =⇒ Yes! no contradiction with present data

could this be observable? =⇒ Yes! by gravitational waves

1st order phase transition =⇒ false metastable vacuum
=⇒ de Sitter solution =⇒ (additional small) inflationary period

H = ȧ/a ∼ M−1

p ρ1/2

v
= Hv = const. → a ∼ exp(Hv · t)

just a few e-folds is enough (standard inflation needs N ∼ 50):

(µ

T

)

f
≈

(

ai

af

)3
(µ

T

)

i

Hence (µ/T )i ∼ O(1) for just N = ln (af/ai) ∼ ln(103) ∼ 7
– p.29



A little inflation in the QCD phase diagram
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(Boeckel and JSB, arXiv:0906.4520)

start with µ/T ∼ 1 (possible for e.g. Affleck-Dine baryogenesis)

universe trapped in false vacuum at the transition line

supercooling and dilution with µ/T = const.

decay to the true vacuum state → reheating to T ∼ Tc so that µ/T ∼ 10−9

then standard cosmological evolution to BBN
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A little inflation – evolution of densities
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energy density falls as a−4 until ρ ∼ Λ4
QCD

then ρ = const. → inflationary period starts

reheating at the end of inflation

maximum length of inflation for scale parameter a from CDM density ∼ 103
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Cosmological signal in gravitational waves!
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(Till Boeckel)

first order transition produces tensor perturbations → gravitational waves

frequency scale given by (redshifted) horizon scale at the transition point
νpeak ∼ H · Tγ,0/T ∼ T/Mp · Tγ,0 ∼ 10−7 Hz, amplitude h ∼ a/a0 ∼ 10−12

amplitude scales as h(ν) ∝ ν−1/2 for ν < H (white noise)
and as h(ν) ∝ ν−2...−1 for ν > H (multi bubble collisions)
(Kamionkowski, Kosowsky, Turner 1994, Huber, Konstandin 2008)
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Cosmological implications of a first order transition

gravitational wave background:
observable with pulsar timing and LISA

cold dark matter density is diluted by 10−9

→ need different WIMP annihilation cross section as
ΩCDM ∼ σweak/σann or larger WIMP mass (probed by LHC!)

large-scale structure modified up to M ∼ 109M⊙

(without QCD inflation only up the horizon mass ∼ 10−9M⊙)

generation of the seeds of (extra)galactic magnetic fields:
observed today in our galaxy B ∼ 10−5 G,
extragalactic B ∼ 10−7 G
need primordial seed fields of B = 10−30 . . . 10−10 G
→ possible within the standard model again!

– p.33



Summary and Outlook

QCD phase transition can occur in the core of neutron stars
=⇒ new family of compact stars possible, explosive phenomena

transition can be present during a supernova, shortly after the
first bounce
=⇒ second shock forms, visible in a a second peak in the
(anti-)neutrino signal, gravitational waves, r-process
nucleosynthesis . . .

1st order transition could have happened in the early universe
=⇒ impact on gravitational wave background, structure
formation, cold dark matter densities . . .

input needed from QCD: effective potential and nucleation
timescales!

– p.34
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