QCD Plasma Instabilities and Nonthermal Fixed Points

Jürgen Berges

Darmstadt University of Technology

Content

- Nonequilibrium instabilities (Weibel, Nielson-Olesen)
- Classical-statistical lattice gauge theory
- Characteristic time scales of SU(2), SU(3) pure gauge
- Kolmogorov wave turbulence vs. infrared fixed points
- Instability-induced fermion production

Nonequilibrium dynamics

Relativistic heavy-ion collisions explore strong interaction matter starting from a transient nonequilibrium state

Thermalization process?

Schematically:

Characteristic nonequilibrium time scales? Relaxation? Instabilities?

Short-time dynamics

• **Anisotropy** of the stress tensor T_{ii} in a local rest frame:

oblate anisotropy \rightarrow $T_{\rm xx} \sim T_{\rm yy} \gg T_{\rm zz}$

Isotropization time t_{iso} ? In the absence of nonequilibrium instabilities:

 $t_{\rm iso} \sim O(1/g^4 T)$ _____ characteristic momentum of typical excitation

• Weibel instability:

Weibel '59; ... Mrowczynski '88, '93, '94; Arnold, Lenaghan, Moore '03; Romatschke, Strickland '03; *very many since then*...

 $t_{\rm iso} \sim O(1/gT)$

• Nielsen-Olesen instability:

Nielsen, Olesen '78; Chang, Weiss '79; ... Iwasaki '08; Fujii, Itakura '08 ...

$$t_{\rm iso} \sim O(1/g^{1/2}B^{1/2})$$

"homogeneous" background field

Nonperturbative description that contains all possible mechanisms:

Real-time lattice QCD

- Quantum simulation not possible so far (stochastic quantization?)
- Classical-statistical simulation: includes all fluctuations with

 $\langle \{ \ A({\sf x}) \ , \ A({\sf y}) \ \}
angle \gg \langle [\ A({\sf x}) \ , \ A({\sf y}) \]
angle$

- i.e. "occupation numbers" $\gg 1$ (includes, in particular, HTL / Vlasov) physics of nonequilibrium instabilities \rightarrow high occupation numbers
- Classical simulations well tested for quantum evolutions in scalar theories:

Classical-statistical lattice gauge field simulations

Romatschke, Venugopalan (CGC); Berges, Gelfand, Scheffler, Sexty

Wilson action:

$$S[U] = -\beta_0 \sum_{x} \sum_{i} \left\{ \frac{1}{2 \operatorname{Tr} \mathbf{1}} \left(\operatorname{Tr} U_{x,0i} + \operatorname{Tr} U_{x,0i}^{-1} \right) - 1 \right\} + \beta_s \sum_{x} \sum_{i,j \ i < j} \left\{ \frac{1}{2 \operatorname{Tr} \mathbf{1}} \left(\operatorname{Tr} U_{x,ij} + \operatorname{Tr} U_{x,ij}^{-1} \right) - 1 \right\}$$

1

Here: $\beta = \beta_0 / \gamma = \beta_s \gamma = 4$, axial-temporal/Coulomb gauge

Initial conditions: Normalized Gaussian probability functional $P[A(t=0),\partial_t A(t=0)]: \langle A(t) A(t') \rangle = \int DA(0) D\partial_t A(0) P[A(0),\partial_t A(0)] A(t) A(t')$

$$\langle |A_j^a(t=0,\vec{k})|^2 \rangle \sim C \exp\{-\frac{k_x^2 + k_y^2}{2\Delta_z^2} - \frac{k_z^2}{2\Delta_z^2}\}$$

with $\Delta \gg \Delta_z$ (extreme anisotropy)

C is adjusted to obtain a given energy density ε , e.g. $\varepsilon_{RHIC} \sim 5-25 \text{ GeV/fm}^3$

Characteristic time scales

Berges, Scheffler, Sexty, PRD 77 (2008) 034504

Inverse primary growth rates: e.g. $\varepsilon_{RHIC} \sim 5-25$ GeV/fm³, $\varepsilon_{LHC} \sim 2 \times \varepsilon_{RHIC}$

fast:
$$\gamma_{\text{max}}^{-1} \simeq 1.2 - 1.8 \,\text{fm}/c \text{ (RHIC)}$$

 $\gamma_{\text{max}}^{-1} \simeq 1.0 - 1.5 \,\text{fm}/c \text{ (LHC)}$ SU(2)

Comparison SU(2) vs. SU(3)

Berges, Gelfand, Scheffler, Sexty, PLB 677 (2009) 210

$$\gamma_{\text{max. pr.}}^{-1} \simeq 1.6 - 2.4 \,\text{fm/c}$$
 (RHIC),
 $\gamma_{\text{max. pr.}}^{-1} \simeq 1.3 - 2.0 \,\text{fm/c}$ (LHC). SU(3)

 \Rightarrow reduced primary growth rates by about 25% for given ϵ with $\Delta / \epsilon^{1/4} = 1$

Comparison SU(2) vs. SU(3)

⇒ Measured in units of the characteristic screening masses $m_{T,SU(2)}$ and $m_{T,SU(3)}$, respectively, the primary growth rate is independent of N_c

 $\Rightarrow \gamma_{\text{SU}(3)} / \gamma_{\text{SU}(2)} = (3/4) \times (\Delta_{\text{SU}(2)} / \Delta_{\text{SU}(3)}) : \qquad \begin{array}{c} C \sim \Delta^2 \\ \downarrow \\ \\ \Delta_{\text{SU}(2)} = \Delta_{\text{SU}(3)} \text{ i.e. 25\% reduction, } \Delta_{\text{SU}(2)} / \Delta_{\text{SU}(3)} = (8/3)^{1/4} \text{ i.e. only ~4\%} \end{array}$

• Initial conditions with **faster isotropization/thermalization**?

 $\Delta / \epsilon^{1/4} \ll$ 1 corresponds to rather "homogeneous" field configurations ($\Delta_z / \epsilon^{1/4} \ll$ 1) \rightarrow Nielsen-Olesen?

Pressure

Spatial Fourier transform of stress tensor $T^{\mu\nu}(t,x)$: $P_{L}(t,p)$ for $\mu=\nu=3$, $P_{T}(t,p)$

Fast bottom-up isotropization for momenta:

 $p_z \lesssim 1 \; GeV$

'enough' for hydro?

Kolmogorov wave turbulence

Berges, Scheffler, Sexty, arXiv:0811.4293 [hep-ph]

- Scaling exponent κ close to the perturbative value $\kappa = 4/3$ See however: Arnold, Moore *PRD* 73 (2006) 025006; Mueller, Shoshi, Wong, *NPB* 760 (2007) 145
- Different infrared behavior? Nonthermal IR fixed point? (Infrared occupation number $\sim 1/g^2 \Rightarrow$ strongly correlated)

• Compare scalar instability dynamics (parametric resonance):

Berges, Rothkopf, Schmidt, PRL 101 (2008) 041603

Slow dynamics: Nonthermal RG fixed points

RG: 'microscope' with varying resolution of length scale

~ 1/k

Fixed point: physics looks the same for 'all' resolutions (in rescaled units)

- UV fixed point for $k \to `\infty`$

A) Hierarchy of infrared fixed point solutions for scalar *N*-component QFT:

Berges, Hoffmeister, NPB 813 (2009) 383

• vacuum:
$$\kappa = -\eta$$

• thermal: $\kappa = -\eta + z$
• nonequilibrium: $\kappa = -\eta + z + d$
 $(Relativistic (z \simeq 1))$ scalar inflaton in $d = 3$, $\eta \simeq 0 \Rightarrow$
 $\kappa \simeq 3/2$, $4/3$, ...
Fluctuation-dissipation relation:
 $m(\omega, \mathbf{p})^{"}$
 $m(\omega,$

No Kolmogorov turbulence in the far UV due to quantum corrections

Instability-induced fermion production

Quantum evolution of $SU(2)_L \times SU(2)_R$ linear sigma model (2PI 1/N to NLO):

• Fast fermion growth induced via boson-fermion loop:

- Scaling behavior at higher momenta (no IR scaling \rightarrow Pauli principle)
- Bosons practically unaffected for Yukawa couplings $\leq O(1)$

→ Instability-induced fermion production can lead to substantial deviations from standard production processes

Quantitatively: **Classical-statistical lattice QCD with** (quantum) **fermions** can be simulated with well established techniques!

Conclusions

• **Plasma instabilities** for CGC type initial conditions ($\Delta / \epsilon^{1/4} = 1$)

 $\gamma^{-1} \simeq 1 - 2 \text{ fm/c}$

• 'Bottom-up' isotropization for $p \lesssim 1$ GeV,

i.e. (optimistically) about the range where hydro 'works'

- Initial conditions with faster isotropization/thermalization? $\rightarrow \Delta \sim O(\Lambda_{QCD})$?
- (Perturbative) Kolmogorov wave turbulence with $\kappa \simeq 4/3$ Nonthermal IR fixed point in QCD?
- Instability-induced fermion production can lead to substantial deviations from standard production processes
 - → fast thermalization of low-momentum fermions on time scale of maximum boson growth rate seen in linear sigma model