G, Gauge Theories

Effective Polyakov Loop Models, Casimir Scaling
and the Gauge-Higgs Phase Diagram

Christian Wozar

Theoretisch-Physikalisches Institut
FSU Jena

with Bjorn H. Wellegehausen and Andreas Wipf

01.09.2009 / St. Goar

==

RESEARCH TRAINING GROUP
‘QUANTUM AND GRAVITATIONAL FIELDS

e
%;’; Studienstiftung
I\

' S des deutschen Volkes




@ Introduction

@ Effective models for G, gluodynamics

© Casimir scaling for 3-dimensional G, gluodynamics
@ 4-dimensional gauge-Higgs model

© Conclusions

arXiv:0907.1450 [hep-lat] Christian



dy G, gauge theories?

@ Gy is the smallest simple and simply connected Lie group with a trivial
centre.

o Investigations of G, YM help to clarify the relevance of centre symmetry for
confinement. —HOLLAND ET AL. (2003), —GREENSITE ET AL. (2008)

o Similarly as in QCD with dynamical quarks is the Polyakov loop an
approximate order parameter.
= Effective theories for Polyakov loop variables include the relevant
properties of Gy gluodynamics.

o New test case for the Svetitsky-Yaffe conjecture:
The confinement-deconfinement transition in a d 4+ 1 dimensional pure
gauge theory can be described by an effective spin model in d dimensions.

o To high precision we check for Casimir scaling of the string tension in
different representations on intermediate scales (before strings breaking
occurs). —LIPTAK AND OLEJNIK (2008)

o When a fundamental Higgs field is coupled there is a transition to SU(3)
gluodynamics. All additional degrees of freedom are frozen out for large
hopping parameter. —PEPE AND WIESE (2006)
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Introduction
The group Gp

o G is the smallest of the five exceptional simple Lie groups.

o It is a subgroup of SO(7) subject to seven independent cubic constraints for
the 7-dimensional matrices g representing SO(7),

Tabc = Tdef 8da Beb 8fc
with the total antisymmetric tensor T given by
Tio7 = Tisa = Tie3 = Tozs = Toea = T34 = Ts76 = 1.

o It has 14 generators and is of rank 2.

o Fundamental representations are the defining 7-dimensional and the adjoint
14-dimensional representation.
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Introduction
The group Gp

For the effective theories formulated in gauge invariant (traced) Polyakov loops
only the reduced Haar measure du o< J dx7 dx14 is needed with

P = (43 — x5 — 2x7 — 10x7x14 + 7 — 10x14 — x34) (7 — X5 — 2x7 + 4x14) -

—UHLMANN ET AL. (2006)
14 T T T T T T T T

12 —
10 - b
8 -

X14 6 - 1

-2 -1 0 1 2 3 4 5 6 7

No symmetry of the fundamental domain. < Trivial centre!
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Introduction
The confinement-deconfinement transition

Situation in SU(3) gluodynamics

o Quarks and anti-quarks transform under fundamental representations 3, 3.

@ Their charges can only be screened by particles with non-vanishing 3-ality,
especially not by gluons!

o In the confining phase the static quark anti-quark potential is linearly rising
up to arbitrary long distances and the Polyakov loop expectation value
vanishes.

o Polyakov loop as order parameter for the Z3 centre symmetry and for
confinement.
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troduction
he confinement-deconfinement transition

Situation in G, gluodynamics

o Quarks transform under the 7-dimensional fundamental/defining
representation, gluons under the 14-dimensional fundamental representation.

@ Three centre-blind dynamical gluons can screen the colour charge of a single
quark,

Moo 1s)=1)a---.

@ The flux tube between two static quarks can break and the Polyakov loop
does not vanish even in the confining phase.
= Polyakov loop is (at best) an approximate order parameter!

@ Confinement is defined as confinement at intermediate scales.
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deconfinement transition

We still see a clear signal in the Polyakov |
transition:
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ffective models for G, gluodynamics

Starting with the Wilson action

1 2N,
5W=,6’Z<1—N—CRetr UD>, ﬂ:a4—g‘32, Ne=7
O

we apply a strong coupling expansion (for small 8). The truncation scheme
combines following features:

o Ordering by powers of 3. This is related to the dimension of corresponding
representations.

o Ordering by distance of interacting Polyakov loops.
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Effective models for G, gluodynamics
The fundamental effective model

o Now only the leading order is studied.
—WELLEGEHAUSEN, WIPF AND WOZAR (2009)

@ This amounts to nearest neighbour interaction.

@ Only the two fundamental representations [1,0] = (7) and [0, 1] = (14) are
involved.

o The action is explicitly given by
Seit = Az > x7(P)x7(Py) + Aa Y _ x14(Pe)x14(Py),
(xy) (xy)

o In next-to leading order there are 6 additional terms with nearest neighbour
interaction.
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ective models for G, gluodynamics

ssical analysis of the fundamental effective model

o For large couplings |A\7| and |A14] fluctuations of the Polyakov loop are
suppressed.

o We compute the phase diagram by minimising the classical action.
o We anticipate that there are anti-ferromagnetic phases.

o Polyakov loops P and corresponding characters x = (x7, x14)(P) should
take a constant value on each of the sub-lattices

N ={x|x1+x2+x3 0dd} and Ae={x]|x3+ x2 + x3 even}.

We find that the Polyakov loop on one sub-lattice is equal to the group identity
with xo = (7,14). There is one ferromagnetic, two anti-ferromagnetic and one
phase in transition from ferro- to anti-ferromagnetic.
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Effective models for G, gluodynamics
Classical analysis of the fundamental effective model
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for G, gluodynamics

the fundamental effective model

o Simulations were done on an 83 lattice.

o We also measure the staggered magnetisation S = % (Ix7,e — X7.0|) in order
to gain information about the anti-ferromagnetic phases.
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luodynamics

o With inverse Monte-Carlo techniques we can determine the couplings A(3).
—WOZAR ET AL. (2007,2008), —VELYTSKY (2008)

o We utilize the canonical demon method which has led to stable results
SU(3) YM. —THASENBUSCH ET AL. (1995)
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mensional G, gluodynamics
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o At intermediate scales we expect Casimir scaling. The string tensions for
different representations R and R’ scale according to ‘;—77: = % with cr
being the quadratic Casimir of the representation K.

o At large distances there can be dynamical colour screening and the string
tension depends on the transformation properties with respect to the centre
subgroup of the gauge group (N-ality).

= Vanishing asymptotic string tension for G,.
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simir scaling for 3-dimensional G, gluodynamics

o For a given representation R = [p, g] the quadratic Casimir is

Clp.q] = 2P° + 6% + 6pg + 10p + 184.

@ These values are normalised with respect to the defining representation by

Cr = cr/c -

representation R~ [1,0] [0,1] [2,0] [1,1] [0,2] [3,0] [4,0] [2,1]
dimension dr 7 14 27 64 77 7 182 189
Casimir value cr 12 24 28 42 60 438 72 64
Casimir ratio Cg 1 2 7/3 35 5 4 6 16/3
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r for 3-dimensional G, gluodynamics

o The static quark anti-quark potential is computed using the behaviour of
rectangular Wilson loops in representation R,

(Wr(R, T)) = exp(kr(R) — VR(R)T) with Vg(R)~yr — ‘%R +oRR.

@ The string tension o is then computed from the Creutz ratio

o (R)— aR to __iln <WR(R+,0,T+T)><WR(R,T)>
RETRRTp) T T ap T (Wr(R+ 9, T)) (Wr(R, T +7))°

For the evaluation on our 283 lattice we used T =12, 7 =2 and p = 1.

@ Monte-Carlo simulations are performed using the Liischer-Weisz —(2001)
exponential error reduction method with multilevel updates.

@ The Wilson loops are computed without any smearing.

o Link updates are done via a local version of the hybrid Monte-Carlo
algorithm.
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Casimir scaling for 3-dimensional G, gluodynamics
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= Casimir scaling works!
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uge-Higgs model

A Higgs field in the fundamental representation is coupled to the G, gauge theory. The
corresponding action is given by

S:ﬁz <1— %trReUD> —HZ¢X+;;UX,”¢X
]

X1

with ®, as 7-dimensional real vector normalised to ¢ - ® = 1.
From group theory follows: —PEPE AND WIESE (2006)

@ For B — oo all links can be gauge-fixed to 1. Then the pure Higgs sector of this
model is invariant under a global SO(7) symmetry.

o For large k the global SO(7) invariance of the Higgs model is spontaneously
broken to SO(6) (second order transition).

o Gauging the G, subgroup of SO(7) (at finite 3) turns this remaining global SO(6)
symmetry into a local SU(3) symmetry.

@ In this case the 6 Goldstone bosons are eaten and the longitudinal components of
G gluons become massive.

@ The Higgs mechanism only leaves the [1,1]sy(s) part of the gluons massless and
the Gy gauge theory is reduced to its SU(3) gauge sector.
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@ We measure the Polyakov loop as an (approximate) order parameter for
confinement and investigate the corresponding critical curve in the -k plane
(here on 123 x 2 lattice).

o For large k the confinement phase in SU(3) is characterised by (x7) = 1.
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gauge-Higgs model

@ On larger (up to 203 x 6) lattices we calculate the full phase diagram
including the Higgs SO(7) — SO(6) transition.
o Phase transitions are obtained by observing susceptibility peaks in the
Polyakov loop and the Higgs part of the action.
o Orders of transitions are determined using histograms for Polyakov loops and
finite size scaling for the Higgs part of the action.
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Conclusions

o The fundamental effective Polyakov loop model was analyzed extensively.

@ The couplings A() can be monitored and they fully agree with our
expectations.

o Casmir scaling was confirmed for the 3-dimensional G, gluodynamics for up
to 8 representations without smearing.

@ The full phase diagram of the gauge-Higgs model was determined.
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