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Introduction
Why should we study G2 gauge theories?

G2 is the smallest simple and simply connected Lie group with a trivial
centre.

Investigations of G2 YM help to clarify the relevance of centre symmetry for
confinement. →Holland et al. (2003), →Greensite et al. (2008)

Similarly as in QCD with dynamical quarks is the Polyakov loop an
approximate order parameter.
⇒ Effective theories for Polyakov loop variables include the relevant
properties of G2 gluodynamics.

New test case for the Svetitsky-Yaffe conjecture:
The confinement-deconfinement transition in a d + 1 dimensional pure
gauge theory can be described by an effective spin model in d dimensions.

To high precision we check for Casimir scaling of the string tension in
different representations on intermediate scales (before strings breaking
occurs). →Liptak and Olejnik (2008)

When a fundamental Higgs field is coupled there is a transition to SU(3)
gluodynamics. All additional degrees of freedom are frozen out for large
hopping parameter. →Pepe and Wiese (2006)
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Introduction
The group G2

G2 is the smallest of the five exceptional simple Lie groups.

It is a subgroup of SO(7) subject to seven independent cubic constraints for
the 7-dimensional matrices g representing SO(7),

Tabc = Tdef gda geb gfc

with the total antisymmetric tensor T given by

T127 = T154 = T163 = T235 = T264 = T374 = T576 = 1.

It has 14 generators and is of rank 2.

Fundamental representations are the defining 7-dimensional and the adjoint
14-dimensional representation.
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Introduction
The group G2

For the effective theories formulated in gauge invariant (traced) Polyakov loops
only the reduced Haar measure dµ ∝ J dχ7 dχ14 is needed with

J2 =
(
4χ3

7 − χ2
7 − 2χ7 − 10χ7χ14 + 7− 10χ14 − χ2

14

) (
7− χ2

7 − 2χ7 + 4χ14

)
.

→Uhlmann et al. (2006)
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No symmetry of the fundamental domain. ⇔ Trivial centre!
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Introduction
The confinement-deconfinement transition

Situation in SU(3) gluodynamics

Quarks and anti-quarks transform under fundamental representations 3, 3̄.

Their charges can only be screened by particles with non-vanishing 3-ality,
especially not by gluons!

In the confining phase the static quark anti-quark potential is linearly rising
up to arbitrary long distances and the Polyakov loop expectation value
vanishes.

Polyakov loop as order parameter for the Z3 centre symmetry and for
confinement.
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Introduction
The confinement-deconfinement transition

Situation in G2 gluodynamics

Quarks transform under the 7-dimensional fundamental/defining
representation, gluons under the 14-dimensional fundamental representation.

Three centre-blind dynamical gluons can screen the colour charge of a single
quark,

(7)⊗ (14)⊗ (14)⊗ (14) = (1)⊕ · · · .

The flux tube between two static quarks can break and the Polyakov loop
does not vanish even in the confining phase.
⇒ Polyakov loop is (at best) an approximate order parameter!

Confinement is defined as confinement at intermediate scales.
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Introduction
The confinement-deconfinement transition

We still see a clear signal in the Polyakov loop at the confinement-deconfinement
transition:
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Effective models for G2 gluodynamics

Starting with the Wilson action

SW = β
∑
�

(
1− 1

NC
Re tr U�

)
, β =

2NC

a4g2
, NC = 7

we apply a strong coupling expansion (for small β). The truncation scheme
combines following features:

Ordering by powers of β. This is related to the dimension of corresponding
representations.

Ordering by distance of interacting Polyakov loops.
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Effective models for G2 gluodynamics
The fundamental effective model

Now only the leading order is studied.
→Wellegehausen, Wipf and Wozar (2009)

This amounts to nearest neighbour interaction.

Only the two fundamental representations [1, 0] = (7) and [0, 1] = (14) are
involved.

The action is explicitly given by

Seff = λ7

∑
〈xy〉

χ7(Px)χ7(Py) + λ14

∑
〈xy〉

χ14(Px)χ14(Py),

In next-to leading order there are 6 additional terms with nearest neighbour
interaction.
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Effective models for G2 gluodynamics
Classical analysis of the fundamental effective model

For large couplings |λ7| and |λ14| fluctuations of the Polyakov loop are
suppressed.

We compute the phase diagram by minimising the classical action.

We anticipate that there are anti-ferromagnetic phases.

Polyakov loops P and corresponding characters χ = (χ7, χ14)(P) should
take a constant value on each of the sub-lattices

Λo = {x | x1 + x2 + x3 odd} and Λe = {x | x1 + x2 + x3 even} .

We find that the Polyakov loop on one sub-lattice is equal to the group identity
with χo = (7, 14). There is one ferromagnetic, two anti-ferromagnetic and one
phase in transition from ferro- to anti-ferromagnetic.
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Effective models for G2 gluodynamics
Classical analysis of the fundamental effective model
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Effective models for G2 gluodynamics
Monte-Carlo results for the fundamental effective model

Simulations were done on an 83 lattice.

We also measure the staggered magnetisation S = 1
2 〈|χ7,e − χ7,o|〉 in order

to gain information about the anti-ferromagnetic phases.
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Effective models for G2 gluodynamics
Connection to G2 YM

With inverse Monte-Carlo techniques we can determine the couplings λ(β).
→Wozar et al. (2007,2008), →Velytsky (2008)

We utilize the canonical demon method which has led to stable results
SU(3) YM. →Hasenbusch et al. (1995)
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Casimir scaling for 3-dimensional G2 gluodynamics

At zero temperature G2 gluodynamics is
confining and there is a linearly rising
static quark anti-quark potential at inter-
mediate distances.
The string tension of gluodynamics with
a general gauge group depends on the
scale and the representation of the static
quarks: 0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

V[1,0]√
σ

R
√
σ

β = 30
β = 35
β = 40

At intermediate scales we expect Casimir scaling. The string tensions for
different representations R and R′ scale according to σR

cR
= σR′

cR′
with cR

being the quadratic Casimir of the representation R.

At large distances there can be dynamical colour screening and the string
tension depends on the transformation properties with respect to the centre
subgroup of the gauge group (N-ality).

⇒ Vanishing asymptotic string tension for G2.
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Casimir scaling for 3-dimensional G2 gluodynamics

For a given representation R = [p, q] the quadratic Casimir is

c[p,q] = 2p2 + 6q2 + 6pq + 10p + 18q.

These values are normalised with respect to the defining representation by
CR = cR/c[1,0].

representation R [1, 0] [0, 1] [2, 0] [1, 1] [0, 2] [3, 0] [4, 0] [2, 1]
dimension dR 7 14 27 64 77 77 182 189
Casimir value cR 12 24 28 42 60 48 72 64
Casimir ratio CR 1 2 7/3 3.5 5 4 6 16/3
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Casimir scaling for 3-dimensional G2 gluodynamics

The static quark anti-quark potential is computed using the behaviour of
rectangular Wilson loops in representation R,

〈WR(R,T )〉 = exp
(
κR(R)−VR(R)T

)
with VR(R) ≈ γR −

αR
R

+ σRR.

The string tension σR is then computed from the Creutz ratio

σR(R) =
αR

R(R + ρ)
+ σR = − 1

τρ
ln
〈WR(R + ρ,T + τ)〉 〈WR(R,T )〉
〈WR(R + ρ,T )〉 〈WR(R,T + τ)〉

.

For the evaluation on our 283 lattice we used T = 12, τ = 2 and ρ = 1.

Monte-Carlo simulations are performed using the Lüscher-Weisz →(2001)

exponential error reduction method with multilevel updates.

The Wilson loops are computed without any smearing.

Link updates are done via a local version of the hybrid Monte-Carlo
algorithm.
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Casimir scaling for 3-dimensional G2 gluodynamics
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⇒ Casimir scaling works!
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4-dimensional gauge-Higgs model

A Higgs field in the fundamental representation is coupled to the G2 gauge theory. The
corresponding action is given by

S = β
X
�

„
1− 1

7
tr Re U�

«
− κ

X
x,µ

Φx+µ̂Ux,µΦx

with Φx as 7-dimensional real vector normalised to Φ · Φ = 1.
From group theory follows: →Pepe and Wiese (2006)

For β →∞ all links can be gauge-fixed to 1. Then the pure Higgs sector of this
model is invariant under a global SO(7) symmetry.

For large κ the global SO(7) invariance of the Higgs model is spontaneously
broken to SO(6) (second order transition).

Gauging the G2 subgroup of SO(7) (at finite β) turns this remaining global SO(6)
symmetry into a local SU(3) symmetry.

In this case the 6 Goldstone bosons are eaten and the longitudinal components of
G2 gluons become massive.

The Higgs mechanism only leaves the [1, 1]SU(3) part of the gluons massless and
the G2 gauge theory is reduced to its SU(3) gauge sector.
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4-dimensional gauge-Higgs model

We measure the Polyakov loop as an (approximate) order parameter for
confinement and investigate the corresponding critical curve in the β-κ plane
(here on 123 × 2 lattice).

For large κ the confinement phase in SU(3) is characterised by 〈χ7〉 = 1.
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4-dimensional gauge-Higgs model

On larger (up to 203 × 6) lattices we calculate the full phase diagram
including the Higgs SO(7)→ SO(6) transition.
Phase transitions are obtained by observing susceptibility peaks in the
Polyakov loop and the Higgs part of the action.
Orders of transitions are determined using histograms for Polyakov loops and
finite size scaling for the Higgs part of the action.
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Conclusions

The fundamental effective Polyakov loop model was analyzed extensively.

The couplings λ(β) can be monitored and they fully agree with our
expectations.

Casmir scaling was confirmed for the 3-dimensional G2 gluodynamics for up
to 8 representations without smearing.

The full phase diagram of the gauge-Higgs model was determined.
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More information can be found on the poster:

Thank you!
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