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1. Motivation

Why Wilson fermions ?

• advantages/disadvantages

+ locality satisfied

+ almost competing algorithms developed

– chiral symmetry explicitely broken, subtle chiral behavior

– complicated phase structure, both at T = 0 and finite T

– continuum limit slow

+ the latter can be cured by improvement
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For Nf = 2 Wilson fermions apparently compatible with O(4) scaling (cf. F. Karsch’s talk).



Main arguments for the twisted-mass approach

• Prevents the occurrence of small eigenvalues of the Dirac

operator by lifting eigenvalues, also zero modes.

(Gattringer, Solbrig 2005).

• This should allow to work at smaller quark masses.

• With the hopping parameter κ tuned to its critical value κc(β)

(“maximal twist”), the twisted-mass term behaves as a

conventional quark mass.

• In this case automatic O(a) improvement is guaranteed (See

Farchioni et al. ’05, Urbach ’07).

Goal of the tmfT collaboration: Extensive study of the phase

diagram of tmQCD in the (κ,β,µ0)-space at non-zero temperature

– a prerequisite for QCD finite-T simulations at maximal twist.

Price to pay: A 3-dimensional phase diagram with a complicated

structure due to O(a2) parity/flavor violating effects.



2. Set-up

The gauge action :

SG = β
∑
x

c0

∑
µ<ν

(
1−

1

3
Re Tr U1×1

xµν

)
+ c1

∑
µ6=ν

(
1−

1

3
Re Tr U1×2

xµν

)
tree-level Symanzik action with (inverse) gauge coupling β = 6/g2

0,

c1 = −1/12 and c0 = 1− 8 c1

The fermion action :

SF = a4
∑
x

{
ψ(x)

[(
D[U ] +m0

)
I2×2 + i µ τ3 γ5

]
ψ(x)

}

D[U ] =
1

2

[
γµ
(
∇µ +∇∗µ

)
− a ∇∗µ ∇µ

]
Wilson-Dirac fermion action with twisted-mass term for Nf = 2

light flavors (in the physical basis Ψ = (u, d))

[Frezzotti, Grassi, Sint, Weisz 2001; Frezzotti, Rossi 2004]



• Hopping parameter κ and twisted mass µ0 combine into a

bare quark mass:

mq =

√
1
4

(
1
κ
− 1

κc

)2
+ µ2

0 (1)

• For maximal twist, i.e. κ = κc(β) (obtained at T = 0),

automatic O(a) improvement is expected.

(See Farchioni et al. ’05, Urbach ’07)

• HMC simulations were performed in a wide range

β = 1.80, . . . ,3.90 on various spatial lattice sizes

Ns = 16 (24, 32) and Nt = 8.

• For µ0 = 0 and Nt = 8 the phase diagram clearly divides into

three regions:

– the Aoki-Phase [Aoki ’84] for strong coupling, i.e. at small

β,

– a bulk transition region at intermediate β,

– and the thermal transition and scaling region at larger β.

• This phase structure is embedded in full (β, κ, µ0)-space.



• As we will see, in the scaling region, according to eq. (1), the

thermal transition forms a conical surface, eventually a closed

ellipse in the (κ, µ0)-plane at each β.



3. Anticipating the phase structure

Twisted mass - an irrelevant rotation in continuum,

not so on the lattice !

An effective potential study for T 6= 0 [Creutz ’07]

basic order parameter fields : σ = ψψ ~π = iψγ5~τψ

effective potential including lattice artifacts :

V (~π, σ) = λ
(
σ2 + ~π2 − v2

)2
+ c1

(
1

κ
−

1

κc(β)

)
σ + c2σ

2 − µπ3

• λ : O(4) symmetric linear σ model

• c1 : mass term (changing sign at κc(β))

• c2 : chiral symmetry breaking lattice artifact

(changing sign at some β)

• µ : the twisted-mass term



0

T = 0 : Phase diagram for twisted-mass Wilson fermions.

A. Shindler, Phys. Rept. 461 (2008) 37
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Chiral effective action proposes a unified view of the phase

diagram embedded in the β-κ-µ diagram.

(Sharpe, Singleton, Creutz)

viewed in the κ-µ plane, going from low β to higher β [Creutz ’07]
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4. Aoki phase

An example of an “unphysical phase pocket”:

• An external “magnetic field” h = 2 κ µ0 ⇒ induces

spontaneous breaking of combined flavor-parity symmetry

[Aoki 1984,1987] in some κ interval

⇒ order parameter limµ0→0 limV→∞〈ψiγ5τ3ψ〉 6= 0 . (jumps

across µ0 = 0)

• No phase transition at µ0 6= 0 (cf. Ising model at H 6= 0)

• Extrapolation to µ0 = 0 can be studied by Fisher plots.

Based on an equation of state

h = A0σ
3 +A1(κ− κc,low)σ (2)

with σ = 〈ψiγ5τ3ψ〉, the would-be order parameter σ2 is

plotted vs. h/σ (requesting a positive intercept).



Evidence for the Aoki phase

β = 1.8 β = 3.0
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No evidence for the Aoki phase beyond β = 3.4

β = 3.4, κ ≤ κc ' 0.1825 β = 3.4, κ ≥ κc ' 0.1825
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=⇒ No signatures for Aoki phase exist any more for β ≥ 3.4.



5. First order bulk transition

The Sharpe-Singleton scenario [Sharpe-Singleton, ’98]

• At intermediate β metastabilities occur signalling a possible 1-st order transition.
Represents a remnant of the bulk transition occurring at T = 0 [Münster ’04].

• Visible in several observables at κc(β;T = 0) and not too large µ0. Data obtained
for µ0 ' 0.007, β = 3.40,3.45.

Polyakov loop scalar condensate
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Other observables go discontinuous

plaquette Aoki order parameter
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6. Thermal transition
• Observables: average plaquette, real part of the Polyakov loop (PL), the pion norm

as well as their respective susceptibilities and integrated autocorrelation times.

• Our κ–scans at β ∈ {3.4, . . . ,3.9} and at fixed µ0 reached statistics of O(104) HMC
trajectories per point in the phase diagram.

Consider a κ–scan concentrating on κ above κc(β) (the vertical lines mark κc(β)) :

Polyakov Loop :

with µ0 = 0.0068 for β = 3.4,3.45,3.65;
with µ0 = 0.005 for β = 3.75.

Polyakov Loop susceptibility :

with the same µ0 values
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=⇒ At κ > κc the cone is separated from the doubler range.



Next zooming into the cone around κc(β) :

(the vertical lines mark κc(β))

Polyakov Loop:

for β = 3.9,3.8,3.775,3.75 with µ0 = 0.005.

Polyakov Loop susceptibility:

for β = 3.9,3.8,3.75 from left to right.
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=⇒ The narrow cone itself (around κc(β)) can be resolved with large-statistics runs only.
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Fit the peaks β = 3.75, µ0 = 0.005 (κc(3.75) = 0.166, mπ ' 400 MeV, r0T ' 0.5):

Polyakov Loop susceptibility

Pion norm

=⇒ Polyakov Loop susceptibility and Pion norm

separate the entrance from the exit transition

=⇒ The lower transition is slightly below κc(3.75).

=⇒ The chiral and deconfinement signals

are seen at the same κ.



Extension of the thermal cone ?

Polyakov Loop expectation values
versus κ for β = 3.75 at various µ0:

Expected extension of the ellipse
in the κ− µ0 plane at β = 3.75:
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=⇒ No transition seen beyond µ0 = 0.025 for β = 3.75.

Adapting the lower and upper (entrance and exit) crossovers to

chiral perturbation theory.

Higher order correction are important !



A closer fit of the cone shape:

• Strength and nature of the transition/crossover are subject to discretisation

effects, i.e. depend on the twist angle ω. This leads to a distortion of the

ellipse and conical shape.

• For sufficiently light quarks, lattice chiral perturbation theory can be applied.

The NLO expression for the pion mass allows to estimate the parameters of

the ellipse [Sharpe ’04]:

m2
π± = M ′ +

16

f2

„
(2L68 − L45)(M ′)2 +M ′â cos(ω)(2W − W̃ ) + 2â2 cos2(ω)W ′

«

+
(M ′)2

2Λ2
χ

ln

0@M ′

ΛR

1A .

Quark masses are renormalised, µ = Zµµ0, m = Zm(m0 −mc);

M ′ =
p
µ̂2 + (m̂′)2, â = 2W0a, µ̂ = 2B0Zµµ0, m̂′ = 2B0Zm(m0 −mc).

The constants B’s, W ’s, L’s can in principle be obtained from fits to

lattice results at T = 0.



7. Feasibility of a β-scan at maximal twist

Again with Nt = 8 , however with large pion mass, mπ ' 1 GeV

Consider a β–scan at large π-mass (huge µ0 = 0.040) with κ ' κc(β), i.e. at maximal twist :
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=⇒ Critical point at βt ' 3.88 (corresponding to Tcr0 ' 0.66) where it should be for this mπ .



8. Check of O(a) improvement
• In the quenched case with Wilson plaquette action the mesonic pseudoscalar

screening mass mPS is determined versus (a/r0)2 for various lattice sizes

Ns = 24, . . . ,32 and Nt = 6, . . . ,16 at fixed T/Tc = 0.655(5) and

mPS/mV ' 0.75.

• The expected linear behavior in (a/r0)2 is observed.
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9. Conclusions

Summary of scanning the phase structure

Global view : Zoomed into the scaling region :
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Results and Perspective

• The complicated global (three-dimensional) phase structure of

Wilson twisted mass QCD with Nf = 2 and improved gauge

action has been resolved.

• The conical shape of the thermal transition surface has been

confirmed in the scaling region.

• To find the critical or crossover behavior requires very large

statistics. A first test to see the crossover for Nt = 8 and,

correspondingly, at large pion mass was successful.

• O(a) improvement works, as has been demonstrated for the

quenched approximation.

• Next we shall run at maximal twist at Nt = 10 and 12, where

we expect to see the transition down to mπ = O(300)MeV.


