The phase diagram of two flavour QCD

Jan M. Pawlowski Universität Heidelberg & ExtreMe Matter Institute

Quarks, Gluons and the Phase Diagram of QCD St. Goar, September 2nd 2009

Outline

• Phase diagram of two flavour QCD

• Quark confinement & chiral symmetry breaking

• Chiral phase structure at finite density

• Summary and outlook

Phase diagram of QCD

Phase diagram of QCD

Phase diagram of two flavour QCD

Continuum methods

Phase diagram of two flavour QCD

Continuum methods

Quark confinement & chiral symmetry breaking

Continuum methods

Continuum methods

Continuum methods

 $T_c \simeq 284 \pm 10 \mathrm{MeV}$

 $T_c/\sqrt{\sigma} = 0.646 \pm 0.023$ lattice: $T_c/\sqrt{\sigma} = .646$

Continuum methods

 $T_c \simeq 284 \pm 10 {
m MeV}$ $T_c / \sqrt{\sigma} = 0.646 \pm 0.023$ lattice: $T_c / \sqrt{\sigma} = .646$

for SU(N), G(2), Sp(2) cf. talk by Jens Braun

Braun, Gies, JMP '07

Universal properties & gauge independence

Continuum methods

Polyakov gauge: $A_0 = A_0^c(\vec{x})\sigma_3$

——: Landau gauge propagators

JMP, Marhauser '08

Imaginary chemical potential

Lattice & Continuum QCD

$$\psi_{\theta}(t+\beta,\vec{x}) = -e^{2\pi i\theta}\psi_{\theta}(t,x)$$
 with $\mu_I = 2\pi T\theta$

• Roberge-Weiss symmetry

$$Z_{\theta} = Z_{\theta+1/3}$$

Lattice & Continuum QCD

Dual order parameter

 Lattice
 Gattringer '06 Synatschke, Wipf, Wozar '08 Bruckmann, Hagen, Bilgici, Gattringer '08
 Continuum
 Fischer, '09; Fischer, Mueller '09 Braun, Haas, Marhauser, JMP '09 (imaginary chemical potential)

cf. talks by J. Braun, C. Fischer, L. Haas, A. Wipf

Lattice & Continuum QCD

$$\tilde{\mathcal{O}} = \int_0^1 d\theta \, \mathcal{O}_\theta e^{-2\pi i \theta}$$

• no imaginary chemical potential (lattice studies):

imaginary chemical potential I: evaluated at equations of motion

$$\tilde{\mathcal{O}}[\langle A_0 \rangle_{\theta}] \equiv 0$$
 \checkmark Roberge-Weiss

• imaginary chemical potential II: evaluated at a fixed background

standard FRG & DSE $\longrightarrow \tilde{\mathcal{O}}[\langle A_0 \rangle_{\theta}] \neq 0 \iff$ breaking of Roberge-Weiss

Lattice & Continuum QCD

$$\tilde{\mathcal{O}} = \int_0^1 d\theta \, \mathcal{O}_\theta e^{-2\pi i \theta}$$

• no imaginary chemical potential (lattice studies):

Continuum methods (Functional RG-flows)

Continuum methods

Continuum methods

Braun, Haas, Marhauser, JMP '09

Continuum methods & lattice

Continuum methods

Braun, Haas, Marhauser, JMP '09

Continuum methods & lattice

Chiral phase structure at finite density

Phase diagram of QCD

Polyakov - Quark-Meson model

• Phase diagram of QCD

• Phase diagram of QCD

Dynamical hadronisation

QCD flows dynamically into hadronic effective theories

• Next steps: real chemical potential & 2+1 flavours

work in progress

- Phase diagram of QCD
 - Confinement & chiral symmetry breaking at finite temperature
 - Dynamical hadronisation
 - critical point and phase lines in effective theories

- Phase diagram of QCD
 - Confinement & chiral symmetry breaking at finite temperature
 - Dynamical hadronisation
 - critical point and phase lines in effective theories

- Phase diagram of QCD
 - Confinement & chiral symmetry breaking at finite temperature
 - Dynamical hadronisation
 - critical point and phase lines in effective theories
 - Hadronic properties
 - non-equilibrium physics