Critical scaling at the chiral phase transition

Jens A. Müller

TU-Darmstadt

3rd September 09

In collaboration with Christian S. Fischer

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ - 三 - のへぐ

1 Introduction

3 Preliminary results

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Chiral symmetry breaking in QCD

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Massless QCD (
$$m_q = 0$$
)

classical symmetries $SU_L(N_f) \times SU_R(N_f) \times U_A(1) \times U_B(1)$

Chiral symmetry breaking in QCD

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Massless QCD ($m_q = 0$)

 $SU_L(N_f) \times SU_R(N_f) \times Z_{2N_f} \times U_B(1)$

Chiral symmetry breaking in QCD

・ロト・西・・田・・日・・日・

(日) (日) (日) (日) (日) (日) (日) (日)

Massless QCD ($m_q = 0, N_f > 1$)

Order parameters

$$\langle \bar{q}_R q_L \rangle \neq 0, T < T_c$$
 or $\operatorname{Tr} S^{-1} \neq 0, T < T_c$
 $\langle \bar{q}_R q_L \rangle = 0, T > T_c$ or $\operatorname{Tr} S^{-1} = 0, T > T_c$

- Transition depends on $\# N_f$ and m_q
- Phase structure obtained by universality argument (Pisarski & Wilczek '84)

Chiral symmetry restoration at $T \neq 0$

Dependence on $\# N_f$ and m_q

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Description of phase transition

▲ロト ▲ 理 ト ▲ 国 ト → 国 - の Q (~

Phase transition from microscopic theory

• Need to account for correct dof below and above the transition

- Low momentum and near transition dof: mesons
- Microscopic dof: quarks & gluons

Description of phase transition

▲ロト ▲ 理 ト ▲ 国 ト → 国 - の Q (~

Phase transition from microscopic theory

- Need to account for correct dof below and above the transition
 - Low momentum and near transition dof: mesons
 - Microscopic dof: quarks & gluons
- Functional methods might provide a tool
 - FRG \leftrightarrow bosonization

Description of phase transition

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

Phase transition from microscopic theory

• Need to account for correct dof below and above the transition

- Low momentum and near transition dof: mesons
- Microscopic dof: quarks & gluons
- Functional methods might provide a tool
 - FRG \leftrightarrow bosonization

Applicability of DSE to phenomenology of chiral symmetry restoration

 $m_q = 0$ and $N_f = 2 \rightarrow 2$ nd order PT O(4) universality class

Dyson-Schwinger Equations

Examples:

DSE quark gluon vertex

Nonperturbative propagators

(日) (日) (日) (日) (日) (日) (日) (日)

Propagators in Matsubara formalism

Quark propagator

$$S(p_{\omega_n}) = (i \ \vec{\gamma} \cdot \vec{p} \ A(p_{\omega_n}) + i \ \gamma_4 \omega_n \ C(p_{\omega_n}) + B(p_{\omega_n}))^{-1}$$
$$p_{\omega_n} = (\omega_n, \vec{p}), \ \omega_n = \pi T(2n+1)$$

• Landau gauge gluon propagator

$$D_{\mu\nu}(p_{\Omega_n}) = \Delta_{\mu\nu}^T(p_{\Omega_n}) \frac{Z(p_{\Omega_n})}{p^2} + \Delta_{\mu\nu}^L(p_{\Omega_n}) \frac{H(p_{\Omega_n})}{p^2}$$
$$p_{\Omega_n} = (\Omega_n, \vec{p}), \quad \Omega_n = \pi T 2 n$$

 $\Delta^{T}_{\mu\nu},\,\Delta^{L}_{\mu\nu}$ are transverse and longitudinal projectors wrt the heat bath

- Numerical results presented here obtained for $Z(p_{\Omega_n}) = H(p_{\Omega_n})$
- But also qualitative agreement for $Z(p_{\Omega_n}) \neq H(p_{\Omega_n})$

ヘロト 人間 トイヨト イヨト

= 900

Connected quark-antiquark scattering amplitude

Separate resonant mesonic contributions

$$K_{tu}^{rs}(q,p,P) = \bar{\Gamma}_{M}^{i}(q,P)|_{rs} \frac{1}{\Omega_{n}^{2} + u^{2}\vec{p}^{2} + m^{2}} \Gamma_{M}^{i}(p,P)|_{tu} + R_{tu}^{rs}(q,p,P)$$

This allows to take into account mesonic effects

C. Fischer, D. Nickel, J. Wambach, PRD 76 (2007) 094009
C. Fischer, D. Nickel, R. Williams, arXiv:0807.3486, [hep-ph]

Truncation

3

500

Connected quark-antiquark scattering amplitude

Modified dispersion relation Pisarski & Tytgat PRD 54 R2989 (1996), Son & Stephanov PRL 88 (2002)

$$K_{tu}^{rs}(q,p,P) = \bar{\Gamma}_{M}^{i}(q,P)|_{rs} \frac{1}{\Omega_{n}^{2} + u^{2}\vec{p}^{2} + m^{2}} \Gamma_{M}^{i}(p,P)|_{tu} + R_{tu}^{rs}(q,p,P)$$

This allows to take into account mesonic effects

C. Fischer, D. Nickel, J. Wambach, PRD 76 (2007) 094009 C. Fischer, D. Nickel, R. Williams, arXiv:0807.3486, [hep-ph]

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ - 三 - のへぐ

• $U_A(1)$ effectively restored above T_c therefore η will only play a minor role

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

- $U_A(1)$ effectively restored above T_c therefore η will only play a minor role
- σ will become important close to T_c and degenerates with π at phase transition

▲ロト ▲ 理 ト ▲ 国 ト → 国 - の Q (~

- $U_A(1)$ effectively restored above T_c therefore η will only play a minor role
- σ will become important close to T_c and degenerates with π at phase transition
- Pion/Sigma effects approximated wo solving for the Bethe-Salpeter amplitude

▲ロト ▲ 理 ト ▲ 国 ト → 国 - の Q (~

- $U_A(1)$ effectively restored above T_c therefore η will only play a minor role
- σ will become important close to T_c and degenerates with π at phase transition
- Pion/Sigma effects approximated wo solving for the Bethe-Salpeter amplitude
 - from axWTI BSA for low pion momenta $(P \rightarrow 0)$

$$\Gamma^i_{\pi}(p, P \to 0) = i \gamma_5 \tau^i \frac{B(p)}{f_t}$$

How is critical scaling reflected in quark-DSE?

How is critical scaling reflected in quark-DSE?

Order parameter Tr $S^{-1} = 4B \Longrightarrow B \sim t^x$, $t = (1 - \frac{T}{T_c})$

How is critical scaling reflected in quark-DSE?

Order parameter Tr $S^{-1} = 4B \Longrightarrow B \sim t^x$, $t = (1 - \frac{T}{T_c})$

• Scaling of pion velocity $u \sim t^{\nu/2}$, (Son & Stephanov PRL 88) (2002)

(日) (日) (日) (日) (日) (日) (日) (日)

How is critical scaling reflected in quark-DSE?

Order parameter Tr $S^{-1} = 4B \Longrightarrow B \sim t^x$, $t = (1 - \frac{T}{T_c})$

• Scaling of pion velocity $u \sim t^{\nu/2}$, (Son & Stephanov PRL 88) (2002)

• for $\Omega_0^{\pi} = 0$ meson exchange becomes leading due to $u \sim t^{\nu/2}$

How is critical scaling reflected in quark-DSE?

Order parameter Tr $S^{-1} = 4B \Longrightarrow B \sim t^x$, $t = (1 - \frac{T}{T_c})$

- Scaling of pion velocity $u \sim t^{\nu/2}$, (Son & Stephanov PRL 88) (2002)
 - for $\Omega_0^{\pi} = 0$ meson exchange becomes leading due to $u \sim t^{\nu/2}$
 - identify scaling in terms of t in right and left hand side of equation

How is critical scaling reflected in quark-DSE?

Order parameter Tr $S^{-1} = 4B \Longrightarrow B \sim t^x$, $t = (1 - \frac{T}{T_c})$

- Scaling of pion velocity $u \sim t^{\nu/2}$, (Son & Stephanov PRL 88) (2002)
 - for $\Omega_0^{\pi} = 0$ meson exchange becomes leading due to $u \sim t^{\nu/2}$
 - identify scaling in terms of t in right and left hand side of equation

$$B \sim \Sigma^B_{\pi,\sigma} \sim \frac{B^3}{u^2} \left(+ \frac{B^5}{u^2} \right) \xrightarrow{\text{consistent}} B \sim t^{\nu/2}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Consistent with known scaling relations!

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Consistent with known scaling relations!

• Known
$$\langle \bar{q}q \rangle \sim t^{\beta}, \quad u^2 \sim f_s^2 \sim t^{\nu}, \quad \beta = \nu/2$$

 $(d = 3 \text{ and wo anomalous dim. } \eta)$

Consistent with known scaling relations!

• Known $\langle \bar{q}q \rangle \sim t^{\beta}, \quad u^2 \sim f_s^2 \sim t^{\nu}, \quad \beta = \nu/2$ $(d = 3 \text{ and wo anomalous dim. } \eta)$

• Ansatz
$$u \sim t^{\nu/2} \longrightarrow B \sim t^{\nu/2}$$

$$B \sim t^{\nu/2} \Rightarrow \begin{cases} \longrightarrow \langle \bar{q}q \rangle = Z_2 \text{ Tr } S \sim t^{\nu/2} & \text{simple scaling analysis!} \\ \xrightarrow{\text{Pagel-Stokar}} f_s^2 \sim t^{\nu} & \text{closed equations in } t \end{cases}$$

▲ロト ▲ 理 ト ▲ 国 ト → 国 - の Q (~

Can be confirmed numerically!

Numerical verification of scaling analysis (preliminary)

Truncation in numerical calculation

- only $\Omega_0^{\pi} = 0$ taken into account
- bare quark propagators in meson exchange contribution
- negelect momentum dependence in BSA $\Gamma_{\pi}(p, P) \rightarrow \frac{B(0)}{f_t}$
- \rightarrow meson exchange loop can be calculated analytical
 - f_s not yet coupled back in dynamical system
 - Assume $u \sim t^{\nu/2} \rightarrow$ check analysis by numerics

Preliminary! Not all components of meson exchange included in numerics

Numerical verification of scaling analysis (preliminary)

 $u \sim t^{\nu/2}$ assumed, here with $\nu = .73$

▲ロト ▲ 理 ト ▲ ヨ ト → ヨ → つ Q (~

Applicability of DSE to phenomenology of chiral symmetry restoration

• Truncation scheme

Tractable meson back-reaction in SSB-phase \rightarrow accounts for important dof near PT

• Scaling analysis suggests that truncation scheme has essential elements to describe 2nd order phase transition

- Check if complete system generates non mean-field critical scaling
- Maybe:
 - BSE at finite temperature