Critical scaling at the chiral phase transition

Jens A. Müller
TU-Darmstadt
3rd September 09

In collaboration with Christian S. Fischer

Outline

(1) Introduction
(2) Truncation
(3) Preliminary results

Chiral symmetry breaking in QCD

Massless QCD $\left(m_{q}=0\right)$
classical symmetries
$S U_{L}\left(N_{f}\right) \times S U_{R}\left(N_{f}\right) \times U_{A}(1) \times U_{B}(1)$

Chiral symmetry breaking in QCD

Massless QCD $\left(m_{q}=0\right)$

Chiral symmetry breaking in QCD

Massless QCD $\left(m_{q}=0\right)$

Chiral symmetry restoration at $T \neq 0$

Massless QCD $\left(m_{q}=0, N_{f}>1\right)$

$$
\begin{array}{ccc}
\text { low temperature } \\
S U_{L+R}\left(N_{f}\right) & \stackrel{\text { phase transition }}{\longleftrightarrow} & \begin{array}{c}
\text { high temperature } \\
\\
\end{array} U_{L}\left(N_{f}\right) \times S U_{R}\left(N_{f}\right)
\end{array}
$$

- Order parameters

$$
\begin{aligned}
& \left\langle\bar{q}_{R} q_{L}\right\rangle \neq 0, T<T_{c} \quad \text { or } \quad \operatorname{Tr} S^{-1} \neq 0, T<T_{c} \\
& \left\langle\bar{q}_{R} q_{L}\right\rangle=0, T>T_{c} \quad \text { Tr } S^{-1}=0, T>T_{c}
\end{aligned}
$$

- Transition depends on $\# N_{f}$ and m_{q}
- Phase structure obtained by universality argument (Pisarski \& Wilczek '84)

Chiral symmetry restoration at $T \neq 0$

Dependence on $\# N_{f}$ and m_{q}
$U_{A}(1)$ symmetry restored only above T_{c}

Description of phase transition

Phase transition from microscopic theory

- Need to account for correct dof below and above the transition
- Low momentum and near transition dof: mesons
- Microscopic dof: quarks \& gluons

Description of phase transition

Phase transition from microscopic theory

- Need to account for correct dof below and above the transition
- Low momentum and near transition dof: mesons
- Microscopic dof: quarks \& gluons
- Functional methods might provide a tool
- FRG \leftrightarrow bosonization

Description of phase transition

Phase transition from microscopic theory

- Need to account for correct dof below and above the transition
- Low momentum and near transition dof: mesons
- Microscopic dof: quarks \& gluons
- Functional methods might provide a tool
- FRG \leftrightarrow bosonization

Applicability of DSE to phenomenology of chiral symmetry restoration

$$
m_{q}=0 \text { and } N_{f}=2 \rightarrow 2 \text { nd order PT } O(4) \text { universality class }
$$

Dyson-Schwinger Equations

Examples:

Quark DSE

DSE quark gluon vertex

Nonperturbative propagators

Propagators in Matsubara formalism

- Quark propagator

$$
\begin{gathered}
S\left(p_{\omega_{n}}\right)=\left(i \vec{\gamma} \cdot \vec{p} A\left(p_{\omega_{n}}\right)+i \gamma_{4} \omega_{n} C\left(p_{\omega_{n}}\right)+B\left(p_{\omega_{n}}\right)\right)^{-1} \\
p_{\omega_{n}}=\left(\omega_{n}, \vec{p}\right), \quad \omega_{n}=\pi T(2 n+1)
\end{gathered}
$$

- Landau gauge gluon propagator

$$
\begin{gathered}
D_{\mu \nu}\left(p_{\Omega_{n}}\right)=\Delta_{\mu \nu}^{T}\left(p_{\Omega_{n}}\right) \frac{Z\left(p_{\Omega_{n}}\right)}{p^{2}}+\Delta_{\mu \nu}^{L}\left(p_{\Omega_{n}}\right) \frac{H\left(p_{\Omega_{n}}\right)}{p^{2}} \\
p_{\Omega_{n}}=\left(\Omega_{n}, \vec{p}\right), \Omega_{n}=\pi T 2 n
\end{gathered}
$$

$\Delta_{\mu \nu}^{T}, \Delta_{\mu \nu}^{L}$ are transverse and longitudinal projectors wrt the heat bath

- Numerical results presented here obtained for $Z\left(p_{\Omega_{n}}\right)=H\left(p_{\Omega_{n}}\right)$
- But also qualitative agreement for $Z\left(p_{\Omega_{n}}\right) \neq H\left(p_{\Omega_{n}}\right)$

Truncation

Connected quark-antiquark scattering amplitude

Separate resonant mesonic contributions

$$
K_{t u}^{r s}(q, p, P)=\left.\left.\bar{\Gamma}_{M}^{i}(q, P)\right|_{r s} \frac{1}{\Omega_{n}^{2}+u^{2} \bar{p}^{2}+m^{2}} \Gamma_{M}^{i}(p, P)\right|_{t u}+R_{t u}^{r s}(q, p, P)
$$

This allows to take into account mesonic effects

C. Fischer, D. Nickel, J. Wambach, PRD 76 (2007) 094009
C. Fischer, D. Nickel, R. Williams, arXiv:0807.3486, [hep-ph]

Truncation

Connected quark-antiquark scattering amplitude

Modified dispersion relation

Pisarski \& Tytgat PRD 54 R2989 (1996), Son \& Stephanov PRL 88 (2002)

$$
K_{t u}^{r s}(q, p, P)=\left.\left.\bar{\Gamma}_{M}^{i}(q, P)\right|_{r s} \frac{1}{\Omega_{n}^{2}+u^{2} \vec{p}^{2}+m^{2}} \Gamma_{M}^{i}(p, P)\right|_{t u}+R_{t u}^{r s}(q, p, P)
$$

This allows to take into account mesonic effects

C. Fischer, D. Nickel, J. Wambach, PRD 76 (2007) 094009
C. Fischer, D. Nickel, R. Williams, arXiv:0807.3486, [hep-ph]

Truncation

- $U_{A}(1)$ effectively restored above T_{c} therefore η will only play a minor role

Truncation

- $U_{A}(1)$ effectively restored above T_{c} therefore η will only play a minor role
- σ will become important close to T_{c} and degenerates with π at phase transition

Truncation

- $U_{A}(1)$ effectively restored above T_{c} therefore η will only play a minor role
- σ will become important close to T_{c} and degenerates with π at phase transition
- Pion/Sigma effects approximated wo solving for the Bethe-Salpeter amplitude

Truncation

- $U_{A}(1)$ effectively restored above T_{c} therefore η will only play a minor role
- σ will become important close to T_{c} and degenerates with π at phase transition
- Pion/Sigma effects approximated wo solving for the Bethe-Salpeter amplitude
- from axWTI BSA for low pion momenta $(P \rightarrow 0)$

$$
\Gamma_{\pi}^{i}(p, P \rightarrow 0)=i \gamma_{5} \tau^{i \frac{B(p)}{f_{t}}}
$$

Scaling analysis of back coupling effect (preliminary)

How is critical scaling reflected in quark-DSE?

Scaling analysis of back coupling effect (preliminary)

How is critical scaling reflected in quark-DSE?

Order parameter $\operatorname{Tr} S^{-1}=4 B \Longrightarrow B \sim t^{x}, \quad t=\left(1-\frac{T}{T_{c}}\right)$

Projection on B:

$$
B\left(p_{\omega_{n}}\right)=-\Sigma_{Y M}^{B}\left(p_{\omega_{n}}\right)-\Sigma_{\pi, \sigma}^{B}\left(p_{\omega_{n}}\right)
$$

Scaling analysis of back coupling effect (preliminary)

How is critical scaling reflected in quark-DSE?

Order parameter $\operatorname{Tr} S^{-1}=4 B \Longrightarrow B \sim t^{x}, \quad t=\left(1-\frac{T}{T_{c}}\right)$

Projection on B:

- Scaling of pion velocity $u \sim t^{\nu / 2}$, (Son \& Stephanov PRL 88) (2002)

Scaling analysis of back coupling effect (preliminary)

How is critical scaling reflected in quark-DSE?

Order parameter $\operatorname{Tr} S^{-1}=4 B \Longrightarrow B \sim t^{x}, \quad t=\left(1-\frac{T}{T_{c}}\right)$

Projection on B:

- Scaling of pion velocity $u \sim t^{\nu / 2}$, (Son \& Stephanov PRL 88) (2002)
- for $\Omega_{0}^{\pi}=0$ meson exchange becomes leading due to $u \sim t^{\nu / 2}$

Scaling analysis of back coupling effect (preliminary)

How is critical scaling reflected in quark-DSE?

Order parameter $\operatorname{Tr} S^{-1}=4 B \Longrightarrow B \sim t^{x}, \quad t=\left(1-\frac{T}{T_{c}}\right)$

Projection on B:

- Scaling of pion velocity $u \sim t^{\nu / 2}$, (Son \& Stephanov PRL 88) (2002)
- for $\Omega_{0}^{\pi}=0$ meson exchange becomes leading due to $u \sim t^{\nu / 2}$
- identify scaling in terms of t in right and left hand side of equation

Scaling analysis of back coupling effect (preliminary)

How is critical scaling reflected in quark-DSE?

Order parameter $\operatorname{Tr} S^{-1}=4 B \Longrightarrow B \sim t^{x}, \quad t=\left(1-\frac{T}{T_{c}}\right)$

Projection on B:

- Scaling of pion velocity $u \sim t^{\nu / 2}$, (Son \& Stephanov PRL 88) (2002)
- for $\Omega_{0}^{\pi}=0$ meson exchange becomes leading due to $u \sim t^{\nu / 2}$
- identify scaling in terms of t in right and left hand side of equation

$$
B \sim \Sigma_{\pi, \sigma}^{B} \sim \frac{B^{3}}{u^{2}}\left(+\frac{B^{5}}{u^{2}}\right) \xrightarrow{\text { consistent }} B \sim t^{\nu / 2}
$$

Scaling analysis of back coupling effect (preliminary)

Consistent with known scaling relations!

Scaling analysis of back coupling effect (preliminary)

Consistent with known scaling relations!

- Known

$$
\begin{aligned}
& \langle\bar{q} q\rangle \sim t^{\beta}, \quad u^{2} \sim f_{s}^{2} \sim t^{\nu}, \quad \beta=\nu / 2 \\
& (d=3 \text { and wo anomalous dim. } \eta)
\end{aligned}
$$

Scaling analysis of back coupling effect (preliminary)

Consistent with known scaling relations!

- Known

$$
\begin{aligned}
& \langle\bar{q} q\rangle \sim t^{\beta}, \quad u^{2} \sim f_{s}^{2} \sim t^{\nu}, \quad \beta=\nu / 2 \\
& (d=3 \text { and wo anomalous dim. } \eta)
\end{aligned}
$$

- Ansatz $u \sim t^{\nu / 2} \longrightarrow B \sim t^{\nu / 2}$

$$
B \sim t^{\nu / 2} \Rightarrow\left\{\begin{array}{rlr}
\longrightarrow\langle\bar{q} q\rangle & =Z_{2} \operatorname{Tr} S \sim t^{\nu / 2} & \text { simple scaling analysis! } \\
& \text { closed equations in } t
\end{array}\right.
$$

Can be confirmed numerically!

Numerical verification of scaling analysis (preliminary)

Truncation in numerical calculation

- only $\Omega_{0}^{\pi}=0$ taken into account
- bare quark propagators in meson exchange contribution
- negelect momentum dependence in $\operatorname{BSA} \Gamma_{\pi}(p, P) \rightarrow \frac{B(0)}{f_{t}}$
\rightarrow meson exchange loop can be calculated analytical
- f_{s} not yet coupled back in dynamical system
- Assume $u \sim t^{\nu / 2} \rightarrow$ check analysis by numerics

Preliminary! Not all components of meson exchange included in numerics

Numerical verification of scaling analysis (preliminary)

$u \sim t^{\nu / 2}$ assumed, here with $\nu=.73$

Conclusion

Applicability of DSE to phenomenology of chiral symmetry restoration

- Truncation scheme

Tractable meson back-reaction in SSB-phase \rightarrow accounts for important dof near PT

- Scaling analysis suggests that truncation scheme has essential elements to describe 2 nd order phase transition
- Check if complete system generates non mean-field critical scaling
- Maybe:
- BSE at finite temperature

