Libera

Low Level RF at FAIR

Dejan Tinta

NUSTAR Week, 27. 9. 2017, Ljubljana

LLRF system specifics

Different accelerators require different features:

- Different RF frequencies
- Circular machines, linacs
- Continuous wave, pulse mode of operation
- Standing wave structure, traveling wave structure
- Superconducting, normal conducting RF cavities
- Analog, digital LLRF
- ...

No standard solutions for LLRF systems

p-Linac LLRF – initial inputs for design

- Experience with existing analog LLRF system at UNILAC
- Requirements for p-Linac
- Instrumentation Technologies digital LLRF system

p-Linac LLRF requirements

- RF frequency: 325.224 MHz
- RF pulse length: 200 μs
- Beam pulse length: up to 70 μs
- Pulse repetition rate: up to 5 Hz
- Amplitude stability: 0.1% RMS
- Phase stability: 0.33° RMS
- Latency: <1 µs

p-Linac LLRF requirements (cont.)

- Diagnostic data at different rates
- RF cavity resonant frequency tuning, applied through states
- Machine protection: intermittent interlock, persistent interlock and AER
- Virtual accelerator time multiplexed operation (Multi pulse operation)
- Integration of FAIR timing receiver (FTRN / White Rabbit)
- Real-time operating system (CentOS)
- Local/Normal operation mode with Expert GUI

Libera LLRF system

Libera LLRF - signal processing in main control loop

Instrumentation Technologies

Author: G. Schreiber, GSI

Libera LLRF – preliminary lab tests at GSI

The LLRF was adapted to p-Linac RF, only rough tunning was done

Tests:

- Step response
- Beam loading

Conclusions:

- Smooth leading edge pulse preshaping (AWG) is needed
- Heavy beam loading compensation is recommended

HW adaptation to p-Linac RF frequency

Analog boards of the Libera LLRF modules were adapted to 325 MHz RF

TCM module

ADC9 module

Vector modulator module

DSP modification - separate ampl. & phase control

Instrumentation Technologies

Diagnostic data

Beam loading compensation

RF cavity resonant frequency tuning

Slow feedback control loop at up to 5 Hz rate

Forward & reflected signal analysis

- Ratio of the signals i.e. Reflected/Forward defines magnitude of the movement
- Phase difference between the signals defines direction of the plunger movement

Decay analysis

Cavity tuning state machine

- Cold: initial state
- Low power tuning: open loop operation at 1-10% of nominal voltage, Fwd+Refl analysis is used for cavity tuning
- **Pre-tuned:** closed loop operation, cavity voltage ramp-up to nominal voltage, decay analysis is used for cavity tuning
- Warm: normal LLRF operation at nominal voltage, decay analysis is used for cavity tuning

Automatic and manual transition between the states is possible.

Machine protection

- Interlock (suspends RF drive output, reaction time is < 5 μs):
 - Input
 - Output
- Advanced Error Reporting (AER): LLRF controller error signal monitoring within a predefined timeframe.

Interlock output

Intermittent interlock:

- Sources:
 - Exdeeded threshold for a predefined duration: Probe, Forward, Reflected,
 Drive output
 - Exdeeded average power: Drive output
- RF drive output is suspended within the same RF pulse and it is restored for the next pulse.

Persistent interlock:

- Source: More consecutive intermittent interlocks causes a persistent interlock.
- RF drive output is suspended and it remains disabled until user reset

Advanced Error Reporting

FAIR timing receiver integration

μTCA FTRN module with White Rabbit functionality:

- Provides RF pulse trigger/gate
- Provides beam trigger/gate for beam loading compensation
- Receives the timing system events

LLRF integration CS/Operator GUI Control System 1000Base-T switched Ethernet RF FESA Expert GUI class WR Eth MCI WR Meas Stepper PLC rack motor controller Libera ILK_IN Instrumentation LLRF Technologies www.i-tech.si

ILK_OUT

Virtual accelerator time multiplexed operation

Procedure:

- FTRN receives a new VA notification via White Rabbit
- FTRN triggers the FESA RT action by sending an event
- FESA RT action sets the active VA parameters via MCI

Precondition: Real-time operating system (CentOS + RT patch)

Local operation mode

- Intended for LLRF experts
- Full access from expert/local GUI only
- Pause mode of operation i.e. RF pulse and beam aren't present at the same time. It is achieved by FTRN/timing configuration.
- Automatic VA rotation is stopped

Expert GUI

Conclusions

- LLRF systems are specific for different accelerators
- Conceptual design for p-Linac LLRF was done in collaboration with GSI experts
- Presented solutions fulfill p-Linac requirements
- Implementation is in progress
- Testing at GSI on real test bench is foreseen in Q1/2018
- Delivery is foreseen at the end of 2018

GSI test bench, source: GSI

Thank you for attention

