# The phase diagram of QCD - a lattice perspective

Attila Pásztor

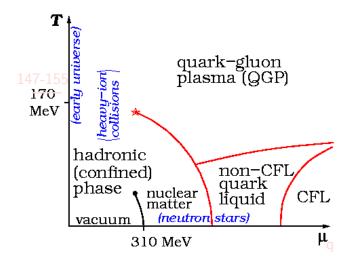
University of Wuppertal Wuppertal-Budapest Collaboration

FAIRNESS 2017 June 1st 2017, Sitges, Spain

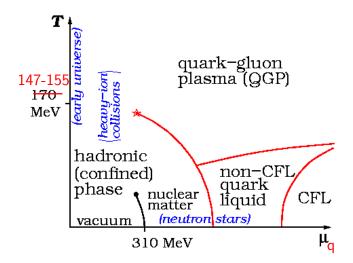




#### The phase diagram of QCD according to Wikipedia

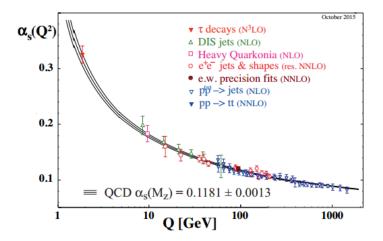


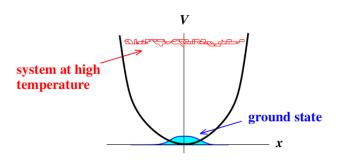
#### The phase diagram of QCD according to Wikipedia



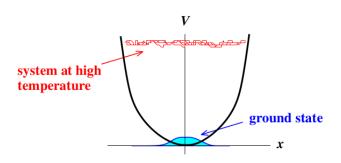
### Why lattice QCD?

#### The Strong Coupling Constant (PDG)

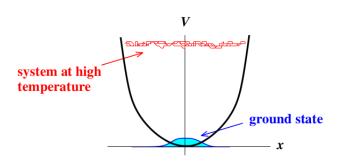




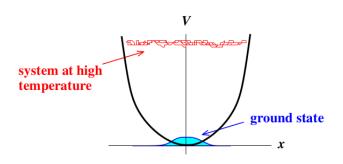
At finite T naive perturbation theory breaks down, even for small g. To illustrate: Imagine a particle moving in a slightly anharmonic potential  $V(x)\sim \omega_0^2 x^2+gx^4$  (mass term + coupling term)



If we ask questions about the ground state, we can approximate the potential by a harmonic oscillator and treat the quartic piece as a perturbation, since the ground state wave function will only extend over a range of x where  $gx^4$  is small compared to  $\omega_0^2x^2$ .



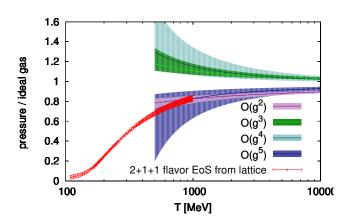
At high temperature states probe a large range of x. No matter how small g is,  $gx^4$  will always be bigger than  $\omega_0^2x^2$  for large enough x. So at high enough T, a perturbative treatment in g breaks down.



In the example, I phrased the problem as one of high T for fixed potential V(x). However, I would have encountered the same problem if I had held T and g fixed but decreased  $\omega_0$  ( $\to$  this is analogous to gauge theories at finite temperature)

#### The pressure in perturbative QCD

IQCD : WB: Nature 539 (2016) no.7627, 69-71 pQCD: Kajantie et al: PRD67 (2003) 105008



#### What is lattice gauge theory?

 $\alpha_s$ 

Lattice field theory is a <u>non-perturbative</u> <u>regularization</u> scheme of Euclidean quantum field theory.

Lattice  $\rightarrow$  UV cutoff  $\sim \pi/a$ 

Imaginary time:  $t=-i\tau$ 

Discretize Euclidean space-time domain on a  $N_s^3 \times N_\tau$  spacetime lattice. Most commonly with periodic boundary conditions.

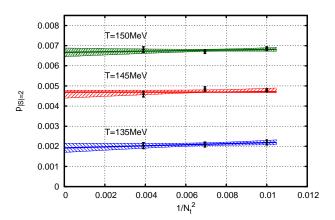
Finite temperature 
$$T = \frac{1}{N_t a}$$

Also important: renormalization and continuum limit.

For T fixed,  $1/N_t \sim a$ .

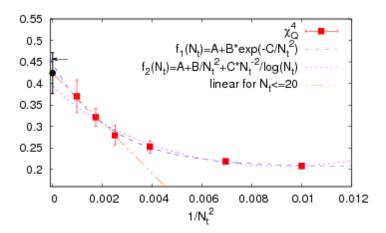
#### The continuum limit is important!!!

Cut-off effects can be mild. E.g. the S=2 partial pressure



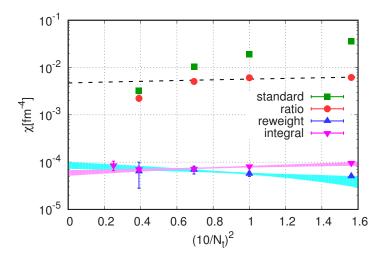
#### The continuum limit is important!!!

Cut-off effects can be big. E.g. charge fluctuations



#### The continuum limit is important!!!

Cut-off effects can be enormous. Example: Topological susceptibility



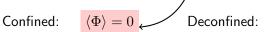
## QCD thermodynamics at $\mu_B = 0$ The QCD transition

#### **Deconfinement: Polyakov loop**

 We consider a system of QCD matter and put an infinite mass static quark in it as a probe

$$\langle \Phi \rangle \sim e^{-F_Q/T}$$

- $\bullet$  Excess free energy  $F_O$  from putting the probe in the system
- Finite free energy → no confinement \_
- Infinite free energy → confinement



$$\langle \Phi \rangle \neq 0$$

#### Polyakov loop: order parameter for confinement

Indeed, for pure gauge theory, without dynamical quarks (quenched) there is a first order phase transition and the Polyakov loop is an order parameter.

#### **Chiral symmetry**

For massless quarks, the QCD Lagrangian:

$$\begin{split} \mathcal{L} &= \bar{\Psi}_a (i \partial_\mu - g A_\mu) \Psi_a + \dots \\ \Psi &\to e^{i \gamma_5 \phi} \Psi \\ \Psi &\to e^{i \gamma_5 \vec{\tau} \cdot \vec{\phi}} \Psi \end{split} \text{ is invariant to axial and iso-axial rotations}$$

Noethers theorem leads to conserved currents:

ullet Spontaneously broken for  $m=0 
ightarrow {
m Chiral}$  condesate

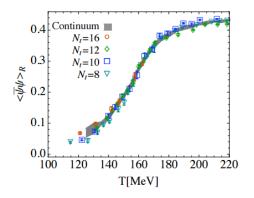
$$\left\langle \bar{\Psi}\Psi\right\rangle = \frac{T}{V}\frac{\partial \log Z}{\partial m_q} \neq 0$$

• Explicitly broken for m > 0

Chiral condensate: order parameter for the chiral transition

#### Chiral vs deconfinement transition

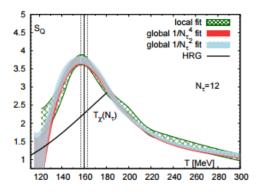
- There is no true phase transition in QCD, only a crossover.
- QCD explicity breaks both center and chiral symmetry.
- We use both the Polyakov loop or the chiral condensate the crossover  $\rightarrow T_c$  values overlap



Wuppertal-Budapest: JHEP 1009 (2010) 073

#### Chiral vs deconfinement transition

- There is no true phase transition in QCD, only a crossover.
- QCD explicity breaks both center and chiral symmetry.
- We use both the Polyakov loop or the chiral condensate the crossover  $\rightarrow T_c$  values overlap

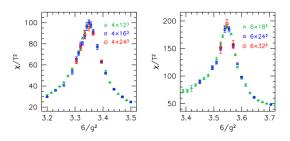


BNL-Bielefeld: PRD93 (2016) no.11, 114502

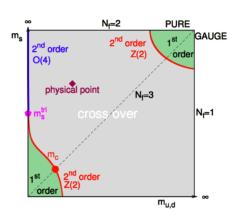
#### Finite size scaling

Proof for crossover?  $\rightarrow$  Finite site scaling (with continuum limit extrapolation)

- In a finite volume there are no phase transitions
- In 2nd order transitions, finite size scaling depends on critical exponents.
- ullet In 1st order transitions, the peak of the susceptibility diverges as  $\propto V$
- $\bullet$  A crossover means there is no finite size scaling.  $\rightarrow$  QCD ( Nature 443 (2006) 675-678 )



#### The Columbia plot

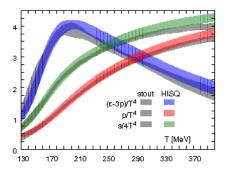


- Pure gauge Francis et al Phys.Rev. D91 (2015)  $T_c = 294(2) \mathrm{MeV}$
- $\begin{array}{l} \bullet \ \ \, N_f=2 \\ \mbox{Wilson} \ \, N_\tau=16 \\ \mbox{} m_\pi=220 \ {\rm MeV} \ \rightarrow \ \, T_c=193(7) {\rm MeV} \\ \mbox{Brandt et al., } 1310.8326 \end{array}$
- Physical point: staggered and Wilson (WB: PRD92 (2015) no.1, 014505 )
- $N_f=3$  BNL-Bielefeld:  $N_{ au}=6$  HISQ no sign of a true PT down to  $m_{\pi}\sim 80 {
  m MeV}$

## QCD thermodynamics at $\mu_B = 0$ The equation of state

#### Equation of state for $N_f = 2 + 1$

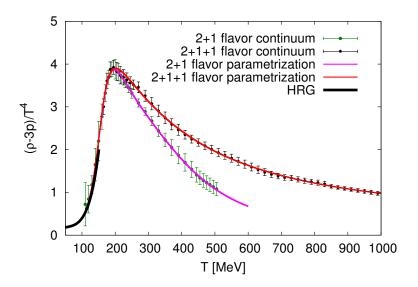
Two independent and compatible results for the  $\mu=0$  and  $N_f=2+1$ 



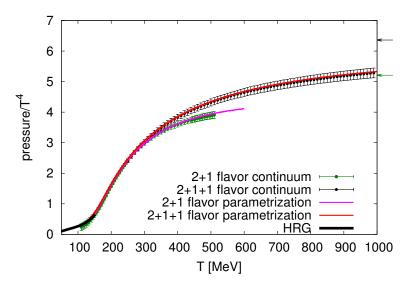
This is nice, but...

- (1) Heavy ion physics: needs  $\mu > 0$
- (2) Cosmology: needs higher temperature, therefore more quark flavours

#### Equation of state with dynamical charm



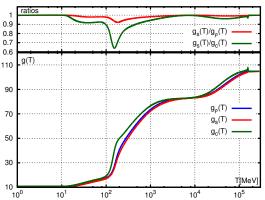
#### Equation of state with dynamical charm



Effect of charm quark is described well by a tree level perturbative

#### The full cosmological equation of state

WB: Nature 539 (2016) no.7627, 69-71



Electroweak contribution: Laine, Meyer 1503.04935, JCAP 1507 (2015)

Energy d. 
$$\rho=g_{\rho}\frac{\pi^2}{30}T^4$$
 entropy d.  $s=g_s\frac{2\pi^2}{45}T^3$  heat cap.  $c=g_c\frac{2\pi^2}{15}T^3$  
$$dT \qquad T^3 \ 2\pi^{3/2}\sqrt{g_{\rho}}g_s$$

Cooling rate in the early universe:  $\frac{dT}{dt} = -\frac{T^3}{M_{\rm Pl}} \frac{2\pi^{3/2}}{3\sqrt{5}} \frac{\sqrt{g_\rho}g_s}{g_c}$ 

## Finite baryon density

#### QCD in the grand canonical ensemble

Grand canonical partition function:

$$e^{-F/T} = \mathcal{Z}(T; \mu_u, \mu_d, \mu_s) = \text{Tr}\left(e^{-\beta(H - \mu_u N_u - \mu_d N_d - \mu_s N_s)}\right)$$

4D phase diagram.

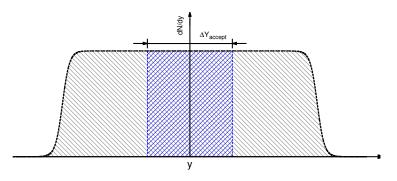
Quark number density 
$$\langle n_q \rangle = \frac{T}{V} \frac{\partial \log \mathcal{Z}}{\partial \mu_q}$$
  
Baryon number density  $\langle n_B \rangle = \frac{1}{3} \left( \langle n_u \rangle + \langle n_d \rangle + \langle n_s \rangle \right)$   
Isospin density  $\langle n_I \rangle = \frac{1}{2} \left( \langle n_u \rangle - \langle n_d \rangle \right)$   
Electric charge  $\langle n_Q \rangle = \frac{2}{3} \langle n_u \rangle - \frac{1}{3} \langle n_d \rangle - \frac{1}{3} \langle n_s \rangle$ 

Both for heavy ion physics and neutron star physics, we need:

- $\langle n_I \rangle < 0$  not a problem
- $\langle n_I \rangle < 0$  not a problem  $\langle n_B \rangle > 0$  complex action problem

#### Do conserved charges fluctuate in HIC?

- If we look at the entire system, none of the conserved charges will fluctuate
- By studying a sufficiently small subsystem, the fluctuations of conserved quantities become meaningful
- This choice of a subsystem in the experiment is implemented by and acceptance cut in rapidity and transverse momentum



# Finite baryon density II. Complex action problems at finite density

#### **Euclidean path integral**

Start with a grand canonical partition function: 
$$Z={
m Tr}\left(e^{-(H-\mu N)/T}\right)$$
 Notation:  $H-\mu N \to H$  for simplicity

The partition function  $Z=\mathrm{Tr}\left(e^{-H/T}\right)$  written as a path integral:

$$Z = \sum_{c_1, c_2, \dots} \left\langle c_1 | e^{-aH} | c_2 \right\rangle \left\langle c_2 | e^{-aH} | c_3 \right\rangle \dots \left\langle c_{n-1} | e^{-aH} | c_1 \right\rangle =: \sum_{[c]} w[c]$$

- $\bullet\,$  Maps the quantum system to a classical system, with configurations c
- w(c) = weight of a configuration c
- $w(c) \ge 0 \implies$  can use Monte Carlo
- $\bullet \ w(c)$  can be negative or complex  $\implies$  sign or complex action problem
- Sign problem property of the system AND the basis we used

#### **Quantum Field Theory**

$$\mathcal{Z} = \int \mathcal{D}\Phi \qquad e^{-S_E} = \sum_{[c]} \qquad w[c]$$

Bosonic and fermionic example with a sign problem:

• Charged scalar field:

$$S = \int d^4x \left[ -\Phi^* \Delta \Phi + (m^2 - \mu^2) |\Phi|^2 + 2i\mu \operatorname{Im} \Phi^* \partial_0 \Phi \right]$$

• QCD with the fermions integrated out:

$$S = S_{\text{YM}} - \sum_{q=1}^{N_f} \ln \det M(m_q, \mu_q)$$
$$\det M(m_q, \mu_q) \in \mathbb{C} \text{ if } \mu_q > 0$$

Complex action appears when we have particle-antiparticle asymmetry!

#### What does it mean to solve a sign problem?

Given a quantum system, with  $Z={\rm Tr}\,e^{-H/T}={\rm Tr}\,e^{-(H_0-\mu N)/T}$ , there is a path integral representation:

$$Z = \sum_{c_1, \dots, c_{n-1}} \langle c_1 | e^{-aH} | c_2 \rangle \langle c_2 | e^{-aH} | c_3 \rangle \dots \langle c_{n-1} | e^{-aH} | c_1 \rangle =: \sum_{[c]} w(c)$$

Here w(c) = weight of classical configurations. We say that:

- The quantum system suffers a sign problem if there are negative or complex weights w(c) in the classical representation.
- An algorithm is of polynomial complexity if the computational time needed to arrive at a given accuracy for an observable scales polynomially with the system size (volume).
- An algorithm that is of polynomial complexity for the related classical system is called a solution of the sign problem for the given system.

M. Troyer, U.-J. Wiese, cond-mat/0408370

#### Non-example: Reweighting

$$\left\langle O\right\rangle_w = \frac{\int \mathcal{D}UO[U]w[U]}{\int \mathcal{D}Uw[U]} = \frac{\int \mathcal{D}UO[U]\frac{w[U]}{r[U]}r[U]}{\int \mathcal{D}U\frac{w[U]}{r[U]}r[U]} = \frac{\left\langle O\frac{w}{r}\right\rangle_r}{\left\langle \frac{w}{r}\right\rangle_r}$$

If the new weight  $\boldsymbol{r}$  is real, we can use importance sampling. The reweighting factor:

$$\left\langle \frac{w}{r} \right\rangle_r = \frac{Z_w}{Z_r} = e^{-\frac{V}{T}\Delta f}$$
  $\Delta f = f_w - f_r$ 

exponantially goes to 0 in the infinite volume limit. This is called the **overlap problem**:  $< O>_w \rightarrow 0/0$ .

Say I chose r=|w|, then  $\left\langle \frac{w}{r} \right\rangle_r = \left\langle e^{i\phi} \right\rangle = e^{-\frac{V}{T}(f_w-f_{|w|})}$  illustrates the sign problem nicely.

The best one can do is make  $\Delta f$  small (e.g. Z. Fodor, S.D. Katz, JHEP 0404 (2004) 050), but the overlap problem is still an exp. in V

#### **Example: Dual variables**

We had in general the path integral representation:

$$Z = \sum_{c_1, \dots, c_{n-1}} \langle c_1 | e^{-aH} | c_2 \rangle \langle c_2 | e^{-aH} | c_3 \rangle \dots \langle c_{n-1} | e^{-aH} | c_1 \rangle =: \sum_{[c]} w(c)$$

Lots of freedom in the choice of the  $c_i$ . So why not change basis? If a representation [c] can be found where:

- $W([c]) \ge 0$
- ullet W([c]) can be computed in polynomial time

then the sign problem is solved (by changing variables in the path integral) Such a change of variables is known for:

- Charged scalar fields: C. Gattringer, T. Kloiber, NPB 869, 2013
- Abelian Higgs model: Y. D. Mercado, C. Gattringer, A. Schmidt, PRL111, 2013
- Yukawa model: S. Chandrasekharan, 2013
- . . .
- But not for QCD.

## Finite baryon density III. Small $\mu$ physics

### Fluctuations in the grand canonical ensemble

The expectation value of a conserved charge:

$$\langle N_q \rangle = T \frac{\partial \log \mathcal{Z}}{\partial \mu_q}$$

The response to  $\mu_q$  is given by the fluctuations of the conserved charge:

$$\frac{\partial \langle N_i \rangle}{\partial \mu_j} = T \frac{\partial^2 \log \mathcal{Z}}{\partial \mu_i \partial \mu_j} = \frac{1}{T} \left( \langle N_i N_j \rangle - \langle N_i \rangle \langle N_j \rangle \right)$$

The higher order susceptibilities:

$$\chi_{i,j,k,l}^{u,d,s,c} = \frac{\partial^{i+j+k+l} \left( p/T^4 \right)}{(\partial \hat{\mu}_u)^i (\partial \hat{\mu}_d)^j (\partial \hat{\mu}_s)^k (\partial \hat{\mu}_c)^l} \text{ where } \hat{\mu} = \mu/T$$

To change the variables one can use:

$$\mu_u = \frac{1}{3}\mu_B + \frac{2}{3}\mu_Q$$
  $\mu_d = \frac{1}{3}\mu_B - \frac{1}{3}\mu_Q$   $\mu_s = \frac{1}{3}\mu_B - \frac{1}{3}\mu_Q - \mu_S$ 

To write the  $\chi_{i,j,k}^{B,Q,S}$ s as linear combinations of  $\chi_{i,j,k}^{u,d,s}$ .

### Taylor expansion of the pressure

Suppose we either:

- fix  $\mu_S = 0 = \mu_Q$  for simplicity
- fix  $\langle S \rangle = 0$  and  $\langle Q \rangle = 0.4 \, \langle B \rangle$  for HIC

The pressure is now:

$$\frac{P}{T^4} = P(T, \mu = 0) + \sum_{k=1}^{\infty} c_{2k} \left(\frac{\mu_B}{T}\right)^{2k}$$

Alternatively, I can fix nothing and calculate the 3 variable Taylor expansion. The coefficients contain lots of info:

- $T_c(\mu)$
- EoS
- Lower limit on location of critical point
- •

## Complexity of the Taylor expansion approach

$$\mathcal{Z} = \int \mathcal{D}U e^{-S_{YM}[U]} \det M[U; m_u, \mu_u) \det M[U; m_d, \mu_d) \det M[U; m_s, \mu_s)$$

$$P = -\log \mathcal{Z}$$

$$\frac{P}{T^4} = P(T, \mu = 0) + \sum_{k=1}^{\infty} c_{2k} \left(\frac{\mu_B}{T}\right)^{2k}$$

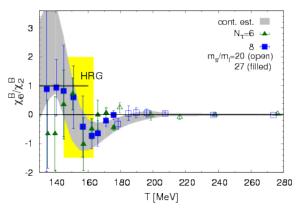
 $c_{2k} \sim \langle \text{Tr} \left( \text{order 2k polynomial in M}^{-1} \text{ and } \mu \text{ derivatives of M} \right) \rangle_{\mu=0}$ 

- Number of terms grows exponentially with order
- Cancellations:  $c_{2k}$  finite as  $V \to \infty$ , but sum of terms scaling with  $\mathcal{O}(V^{k-1})$

 $\implies$  The sign problem strikes back.

#### Complexity of the Taylor expansion method

 $\implies$  The sign problem strikes back. The result is that after years of runs:

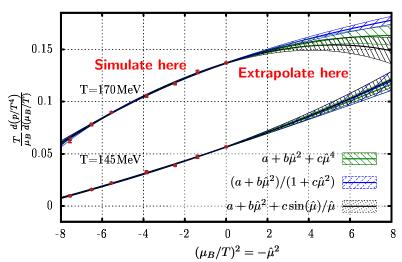


BNL-Bielefeld-CCNU: hep-lat/1701.04325

To reliably constrain the critical point, much higher order is needed.

#### **Analytical continuation**

#### Analytical continuation on $N_t = 12$ raw data



#### **Analytical continuation vs Taylor expansion**

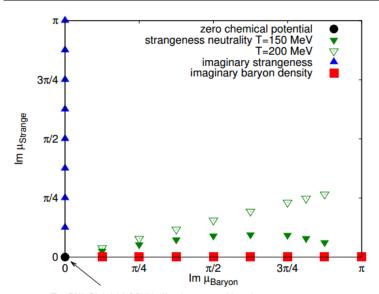
If we just restrict ourselves to calculating Taylor coefficients:

- $\bullet$  Since I am fitting the dependence in  $\operatorname{Im} \mu$  I have to take less derivatives
- So I have a volume factor less of cancellations. I win in statistics
- The price I pay is the systematic error coming from the extrapolation

#### BUT

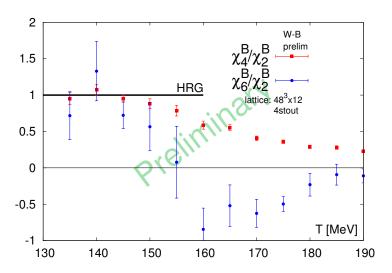
There are also other uses of imaginary  $\mu$  (I will talk about hadron chemistry)

### Simulation landscape with imaginary $\mu_B$



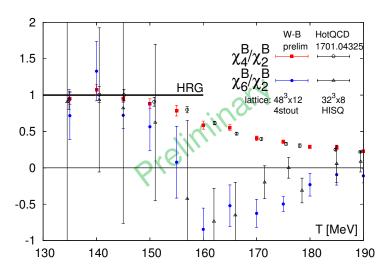
The BNL-Bielefeld-CCNU effort focuses to this point

## The power of the method: $\chi_6^B/\chi_2^B$



See also D'Elia et al 1611.08285; Datta et al 1612.06673 ; BNL-Bielefeld-CCNU: 1701.04325

## The power of the method: $\chi_6^B/\chi_2^B$

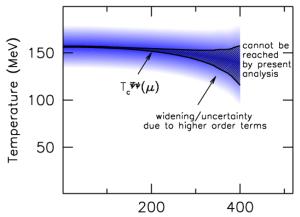


See also D'Elia et al 1611.08285; Datta et al 1612.06673 ; BNL-Bielefeld-CCNU: 1701.04325

#### The crossover line from analytical continuation

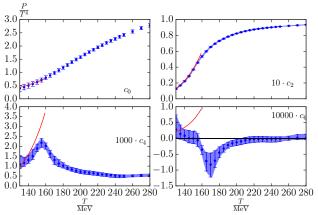
$$\frac{T_c(\mu_B)}{T_c(0)} = 1 - \kappa \left(\mu_B / T_c(\mu_B)\right)^2 \qquad \kappa = 0.0149(21)$$

WB: hep-lat/1507.07510  $~\mu_S$  and  $\mu_Q$  from  $\langle S \rangle = 0$  and  $\langle Q \rangle = 0.5 \, \langle B \rangle$ 



#### Equation of state from analytical continuation

WB: hep-lat/1507.07510  $\mu_S$  and  $\mu_Q$  from  $\langle S \rangle = 0$  and  $\langle Q \rangle = 0.4 \, \langle B \rangle$ 

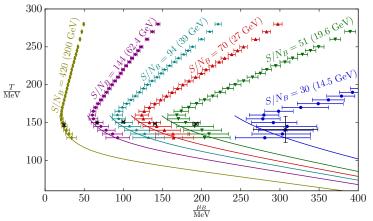


It appears Taylor expansion is under control for  $\mu_B/T \leq 2$ . This is not so bad. It means it can be used for RHIC energies:

$$\sqrt{s} = 200, 62.4, 39, 27, 19.6, 14.5 \text{GeV}$$

### Isentropic trajectories from analytical continuation

WB: hep-lat/1507.07510  $~\mu_S$  and  $\mu_Q$  from  $\langle S \rangle = 0$  and  $\langle Q \rangle = 0.4 \, \langle B \rangle$ 



Black freeze-out parameters: Alba et al, 2014

# Finite baryon density IV. Hadron chemistry

#### Hadron thermodynamics from the virial expansion

- Virial Expansion: Expansion of p in fugacity  $e^{\mu/T}$
- This is the natural expansion to compute with imaginary chemical potentials, since  $\cosh(i\mu_I/T) = \cos(\mu_I/T)$ : the virial coefficients become Fourier coefficients
- Dashen, Bernstein, Ma '69 Dashen, Rajaraman '75 

  if the interactions are dominated by narrow resonant scattering, the thermodynamics looks like a bunch of free particles
- Hadron Resonance Gas Model:

$$\frac{p^{\text{HRG}}}{T^4} = \frac{1}{VT^3} \left( \sum_{i \in \text{mesons}} \log \mathcal{Z}^M \left( T, V, m_i, \{ \mu \} \right) + \sum_{i \in \text{baryons}} \log \mathcal{Z}^B \left( T, V, m_i, \{ \mu \} \right) \right)$$

 HRG is very commonly used in heavy ion phenomenology, e.g. to extract chemical freezeout curves

### Hadron thermodynamics from the virial expansion

Allows for the separation of channels with different quantum numbers. One chemical potential:

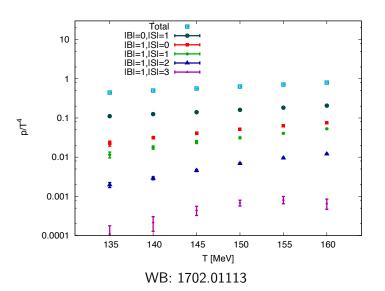
$$P(\hat{\mu}_B, \hat{\mu}_S = 0, \hat{\mu}_Q = 0) = P_0^B + P_1^B \cosh(\hat{\mu}_B) + P_2^B \cosh(2\hat{\mu}_B) + \dots$$

Two chemical potentials:

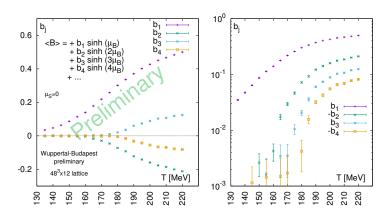
$$\begin{split} P(\hat{\mu}_B, \hat{\mu}_S, \hat{\mu}_Q = 0) &= P_{00}^{BS} + P_{10}^{BS} \cosh(\hat{\mu}_B) + P_{01}^{BS} \cosh(\hat{\mu}_S) \\ &+ P_{11}^{BS} \cosh(\hat{\mu}_B - \hat{\mu}_S) + P_{12}^{BS} \cosh(\hat{\mu}_B - 2\hat{\mu}_S) \\ &+ P_{13}^{BS} \cosh(\hat{\mu}_B - 3\hat{\mu}_S) + \dots \,, \end{split}$$

Trick:  $\cosh(i\mu_I) = \cos(\mu_I) \implies$  for imaginary  $\mu$  virial  $\rightarrow$  Fourier

#### Virial coefficients $\rightarrow$ strangeness sectors



#### Virial coefficients $\rightarrow$ baryon sectors



#### Outlook

- ullet For  $\mu=0$  physics there are very solid results.
- No solution for the sign problem at  $\mu>0$  is QCD. But dense QCD is important enough to keep trying.
- Progress:
  - $\mu = 0$ , high T and connecting with weak coupling estimates
  - ullet small  $\mu$  physics
- There is still a lot to do even without solving the sign problem:
  - Simulations with chiral fermions
  - Columbia plot
  - ullet Small  $\mu$  physics: higher order fluctuations with high precision and in the continuum
  - ullet Chiral vs deconfinement transition at small  $\mu$
  - · Chemical freezeout

I thank my collaborators: P. Alba, R. Bellwied, Sz. Borsányi, Z. Fodor, J. Günther, C. Hoelbling, S. Katz, J. Noronha-Hostler, P. Parotto, C. Ratti, D. Sexty, K. Szabó, B. Tóth, Cs. Török

# Backup