EnsarRoot: The framework for simulation and data analysis for ENSAR

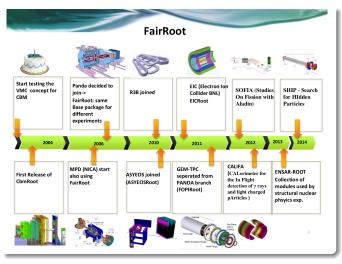
Pablo Cabanelas

June 2nd of 2017

Outline

- Introduction: the ENSAR Project and FairRoot
- 2 EnsarRoot Description
- Present Developments
- Other users cases

- Introduction: the ENSAR Project and FairRoot


European Nuclear Science and Applications Research

- ENSAR2: second phase of the project http://www.ensarfp7.eu/
- JRA in ENSAR: SiNuRSE / SATNuRSE (2nd phase)
 http://igfae.usc.es/satnurse
 - Simulations and Analysis Tools for Nuclear Reactions and Structure in Europe
 - EnsarRoot is started in SiNuRSE, and continues in SATNuRSE

FairRoot community time line

What is a framework like FairRoot?

- The purpose of a framework is to improve the efficiency of creating new software
- Reuses code that has been pre-built and pre-tested increasing the reliability of a new application and reduce the programming effort
- In short: simple, adaptive, flexible

- 1 Introduction: the ENSAR Project and FairRoot
- EnsarRoot Description
- 3 Present Developments
- Other users cases

EnsarRoot: Definition

Simulation and data analysis framework adopted for small/medium scale nuclear and particle physics experiments

Delivers base classes which enable the users to construct their detectors and analysis tasks in a simple way

Serves as the core where all developments can be implemented

Code is on its central git repository: https://github.com/EnsarRootGroup/EnsarRoot

Uses the FairRoot base libraries

All required external software is in FairSoft with automatic installation on multiple platforms/compilers

EnsarRoot: General layout

ROOT Based

- No executables ROOT steering macros with dynamic libraries
- Input/Output in TFile, TTree, TClonesArray... structures in root files
- TGeo root file format for geometry and navigation
- TEve based event viewer

VMC interface: TGeant3, TGeant4 transport engines

- A complete set of scripts (macros) and instructions to start simulations and analyse data
- Templates (modules) of different detectors and setups; geometries and digitization
- Fancy event display
- Event generators for different physical cases, e.g.

What the user will find in EnsarRoot?

- A complete set of scripts (macros) and instructions to start simulations and analyse data
- Templates (modules) of different detectors and setups; geometries and digitization
- Fancy event display
- Event generators for different physical cases, e.g.:

- A complete set of scripts (macros) and instructions to start simulations and analyse data
- Templates (modules) of different detectors and setups; geometries and digitization
- Fancy event display
- Event generators for different physical cases, e.g.:

What the user will find in EnsarRoot?

- A complete set of scripts (macros) and instructions to start simulations and analyse data
- Templates (modules) of different detectors and setups; geometries and digitization
- Fancy event display
- Event generators for different physical cases, e.g.:

Some implemented Event Generators

- Standard Ion Generator with FairIon class interface
- Proton Induced Gamma Emission (PIGE) Generator
- Giant and Pygmy Dipole Resonance Generator
- CRY Generator Interface (Cosmic Ray Air Showers

- Standard Ion Generator with FairIon class interface
- Proton Induced Gamma Emission (PIGE) Generator
- Giant and Pygmy Dipole Resonance Generator
- CRY Generator Interface (Cosmic Ray Air Showers Generator)

Some implemented Event Generators

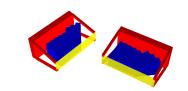
- Standard Ion Generator with Fairlon class interface
- Proton Induced Gamma Emission (PIGE) Generator
- Giant and Pygmy Dipole Resonance Generator
- CRY Generator Interface (Cosmic Ray Air Showers Generator)

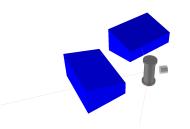
Some implemented Event Generators

- Standard Ion Generator with FairIon class interface
- Proton Induced Gamma Emission (PIGE) Generator
- Giant and Pygmy Dipole Resonance Generator
- CRY Generator Interface (Cosmic Ray Air Showers Generator)

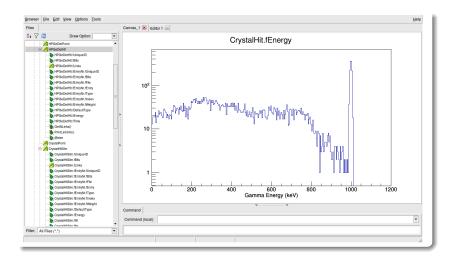
- **Present Developments**

CsI(TI) and HPGe detectors implementation


Recent experiment at CTN/IST Tandem accelerator in Lisbon, Portugal

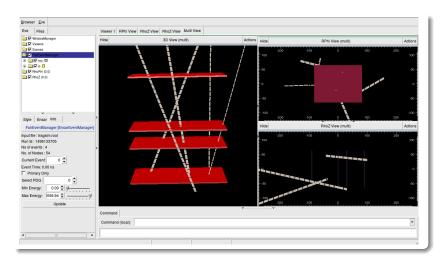

Implemented in the framework for both simulation and real data analysis

CsI(TI) and HPGe detectors implementation



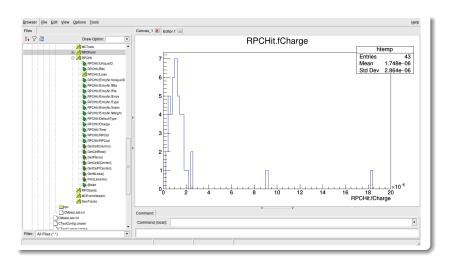
CsI(TI) and HPGe detectors implementation

Resistive Plate Chamber detector implementation

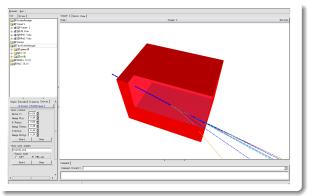


Cosmic Ray Air Showers telescope at Santiago de Compostela, Spain

Implemented for simulation only so far


Resistive Plate Chamber detector implementation

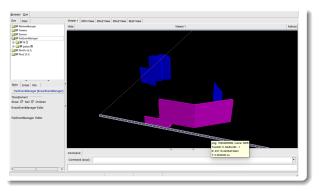
Resistive Plate Chamber detector implementation


- Other users cases

Other users implemented cases

Gamma-ray simulations in nTOF-CERN

Simulation of gamma flash measurements with scintillator detectors in the nTOF line



Other users implemented cases

The E105 experiemnt at ESR-GSI

Simulation of parts of the setup: DSSD and Si(Li) detectors Event generators: elastic scattering of 56 Ni on p and α

Thank you for your attention!

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under grant agreement No 654002

