

Charge collection studies of silicon microstrips sensors for the CBM Silicon Tracking System

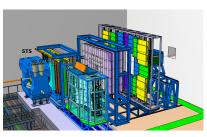
Ievgeniia Momot ^{1,2,3} for the CBM collaboration

¹Goethe University, Frankfurt, Germany

²GSI, Darmstadt, Germany

³KINR, Kyiv, Ukraine

Sitges 2017

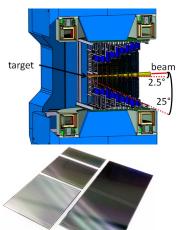


- 1 Introduction
 - Compressed Barionic Matter @FAIR
 - Silicon Tracking System of the CBM experiment
- 2 Irradiation studies
 - Tests before irradiation
 - Electrical tests
 - \blacksquare Studies of the impact of glue
 - Noise
 - Signal over Noise ratio
 - After irradiation
 - Electrical tests
 - Charge Collection Efficiency
- 3 Alternative read-out configurations
 - Laboratory tests with a perpendicular track configuration
 - Angular scan with a proton beam
- 4 Summary

Compressed Barionic Matter Experiment @FAIR

Fri. 9-00

- Inside of the dipole magnet:
 - Micro Vertex Detector
 - Silicon Tracking System
- Electron/Muon modes:
 - Ring Imaging Cherenkov Detector
 - Muon Chamber
- Calorimeters:
 - EM ECAL
 - Hadron Projectile Spectator
- Time of Flight Wall


Aim: To study the QCD phase diagram at high net baryon densities and moderate temperatures

- Au+Au collisions @SIS100 2 - 11 AGeV, 10^5-10^7 interactions/s;
- up to 10³ charged particles per central collision.

physics program @SIS100:

- Strange hadrons
- Lepton pairs
- Collective flow, correlations and fluctuations
- Hypernuclei
- Charm-anticharm quark pairs

The Silicon Tracking System @CBM

Silicon Tracking System:

- 8 tracking stations
- 1220 sensors, 896 modules, 106 ladders
- hit rates up to 20 MHz/cm²
- low material budget $\sim 1\% X_0$
- $< 25 \mu m$ hit spatial resolution
- S/N>10 for the hit reconstruction efficiency $\sim 98 \%$

Double-sided micro-strip Si sensors:

- $285/320 \mu m$ thick, $58 \mu m$ strip pitch
- sensor sizes 6×2 , 6×4 , 6×6 , 6×12 cm²
- 7.5° stereo-angle front-back sides
- radiation tolerance: 10¹⁴ 1 MeV n_{eq}/cm²

Radiation Challenge

Measuring rare probes with reliable statistics requires high interaction rate (up to 10^7 Au+Au collisions/s) ~ 1000 particles per collision. $(700 \pi, 160 p, 53 K, 32 \Lambda, 27 K_s, \sim 1 \Theta, 0.022 \Omega)$

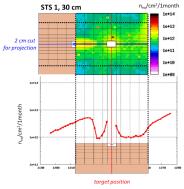


Figure : FLUKA calculation of non-ionizing dose at STS station 1 for 10 AGeV Au+Au collisions at SIS100

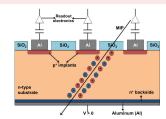
For that we need Fast. Radiation Tolerant, High-precision Detectors

Table: Maximum values of ionizing and non-ionizing dose on the STS, after one month with Au+Au collisions.

Type of Dose	Non-Ionising, n_{eq}/cm^2	Ionising, Gy
SIS 100, 10 AGeV	2.1×10^{13}	11.9×10^3

Impact of radiation on Si sensors

Before irradiation

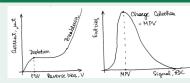

- Average energy per pair creation: $E_{e^-h}=3.6$ eV, charge MPV $(300 \ \mu \text{m of Si}) \sim 22 \text{ke}^{-}$
- Noise depends on a sensor:
 - nA leakage current \rightarrow negligible contribution
 - capacitive load

and r/o electronics:

for final STS-XYTER ~1000e⁻

After irradiation

- Signal
 - degradation of the charge collection efficiency
 - higher depletion voltage required
- Noise
 - leakage current increases (by orders of magnitude): $\Delta I/V = \alpha \times \Phi_{eq}, A/cm^3$
 - ⇒ Deterioration of the S/N ratio



Actions to compensate impact of irradiation:

- Increase bias voltage (up to 300 V ... 500 V)
- Decrease leakage current by cooling
- Beneficial annealing

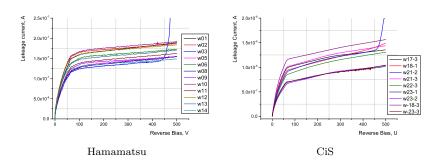
Preparation and measurement before irradiation

- Electrical characteristics: current-voltage (IV) and capacitance-voltage (CV) dependence
- Measurements of charge the collection efficiency

Shipment, irradiation

delivered to GSL

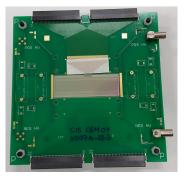
Sensors installed in a pure Al frame \rightarrow irradiated. Cooled during storage \rightarrow



Measuring after irradiation

repeat the same measurements

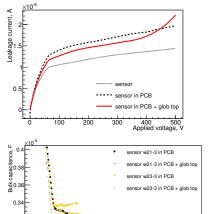
CiS and Hamamatsu sensors 6×2 cm²



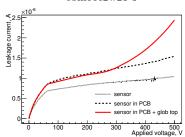
12 sensors were selected and wire-bonded to the PCB frames.

Tests of the impact of glue

2 sensors 6×2 cm² were selected to check their performance after protecting bonds from mechanical damage. Possible changes:


- leakage current;
- earlier breakdown;
- affection of the noise.

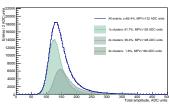
Glue Tests: IV, CV


cbm06c2w21-3

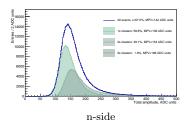
300

400 500 Applied voltage, V

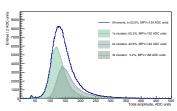
cbm06c2w23-3

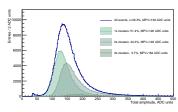


- Two sensors studied before irradiation.
- The IV curve changes after the glue was applied.
- The CV curve:
 - same shape
 - capacitance of both sensors increased by 0.026 nF.


0.32

Protection of the wire-bonds with glue: Signal


before applying glue


p-side

after applying glue

p-side

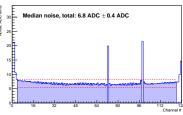
n-side

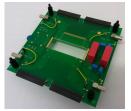
Set-up @STS lab

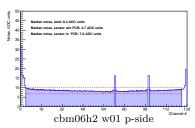
top view

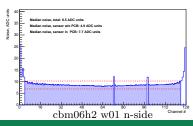
 β source: 90 Sr (90 Y decay $E_{max} = 2.28 \text{ MeV}$) Trigger and Mips selector: Scintillator (2.5 cm thick) + PM.

Thermal enclosure:

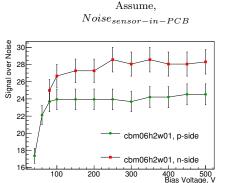

- cycle from +23°C till -11°C and back ~ 2 h;
- cooling liquid: Glycole + H₂O;
- 2 radiators; 6 fans.

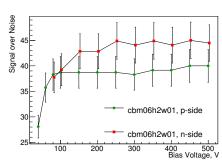



Noise pattern of the 2×6 cm² sensors

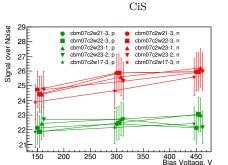

 $Noise = Sensor \oplus Pitch \ adapter \oplus PCB(printed \ circuit \ board) \oplus Daughter \ board \oplus \dots$

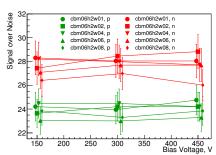
$$Noise_{sensor} = \sqrt{Noise_{DB+PCB+sensor}^2 - Noise_{DB+PCB}^2}$$





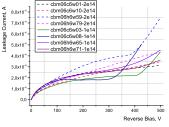
Voltage scan of the cbm06h2 w01 sensor



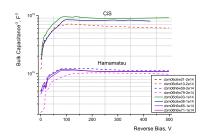


For better illustration points of n-side were shifted to +3V

S/N for measured CiS and Hamamatsu sensors



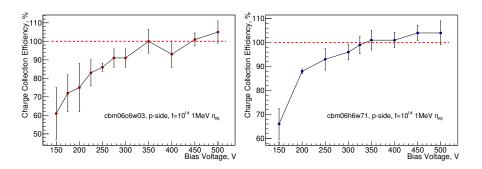
Hamamatsu



- Each sensor was measured for p- and n-side at three different voltages: 150 V, 300 V, 450 V – to compare values after irradiation at the same point;
- S/N for p- and n-side is the same within the error bars.

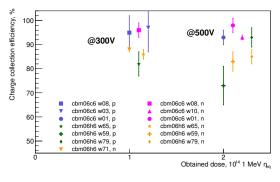
Leakage current dependence on the applied bias voltage.

Bulk capacitance as a function of reversed bias



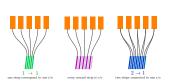
After irradiation:

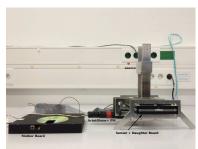
After irradiation


- Leakage current increases by a factor 500 $(10^{14} \text{ n}_{eq}/\text{cm}^2)$ or 1000 $(2\times10^{14}$ n_{ea}/cm^2).
- Sensors are constantly cooled:
 - to suppress current during data taking:
 - to avoid annealing during storage.

Charge collection after irradiation

By increasing of depletion voltage it is possible to restore 100 % of the charge collection efficiency.

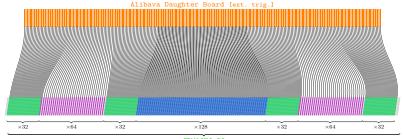

Charge collection after irradiation



- 100 % = collected charge of non-irradiated sensor;
- $\begin{array}{l} \ \, {\rm bias\ voltage:} \\ 300\ \, {\rm V\ (for\ } 10^{14}n_{eq}) \\ \, {\rm or\ } 500\ \, {\rm V\ (for\ } 2\times 10^{14}n_{eq}) \end{array}$
- after irradiation CCE drops down by 10% 20%

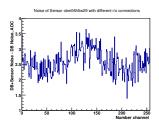
Charge collection studies with different read-out configurations

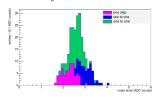
- Tracks are non-perpendicular in the outer part of STS \rightarrow larger clusters \rightarrow risk of the signal losses
- To get signal higher → to read not every strip, but from two or every second strip
- First approach: only perpendicular tracks

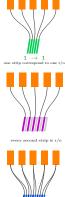


Charge collection studies with different read-out configurations

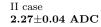
Different configurations of connection in the outer aperture of STS detector were tested:

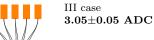

- each strip corresponds to one r/o channel
- every second strip is read-out
- two strips connected to one r/o channel


CBM06H6w29 no routing lines, only long strips

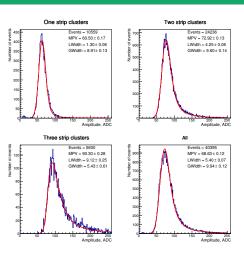

Advantage:

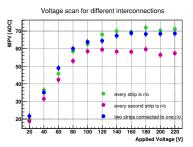
* possible S/N improvement


Edge & noisy channels were removed from analysis

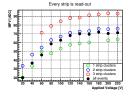


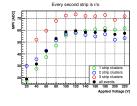
two strips connected to one r/o

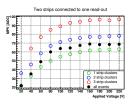

I case $2.58\pm0.02~{
m ADC}$



Laboratory tests with a perpendicular track configuration


Charge collection studies with different read-out configurations




- Cluster charge spectrum was fitted by the Landau-Gaussian convolution
- MPV interpreted as collected charge

Voltage scan for different read-out configurations

Assume, our noise is uniform: $S/N_{cluster} = S/(\sqrt{m} \times N)$, S – signal [ADC], N – noise [ADC], m – cluster size

Table: Signal over noise for perpendicular tracks

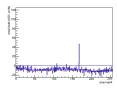
Cluster size:	Connection scheme:		
	One to one	One omitted	Two to one
One strip	$60.09/2.58 \sim 23.3$	$60.8/2.27 \sim 26.8$	$62.18/3.05 \sim 20.4$
Two strips	$73.42/3.65 \sim 20.1$	$56.01/3.21 \sim 17.5$	$76.93/4.31 \sim 17.8$
Three strips	$91.2/4.47 \sim 20.4$	$71.79/3.93 \sim 18.3$	$96.64/5.28 \sim 18.3$

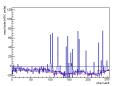
0000000

Set-up at COSY

Main components:

- Cold box on movable platform and r/o + exchangable sensors;
- Warm box with sensor bonded to r/o;
- Trigger: two scintillators (perpendicular to each other) in coincidence scheme.
- Read out: front-end ASIC and DAQ -Alibava system (Beethle chip): -2 × 128 r/o channels;




angular scan from -25° to $+25^{\circ}$

What to measure:

Alternative read-out configurations

- Charge collection;
- Signal dependence on beam incidence angle;
- Cross talk.

Charge collection at different beam angles

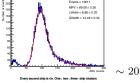
Type of connection

$$\Phi = 0^{\circ}$$

Every strip is r/o. One-, two-, three- strip clusters

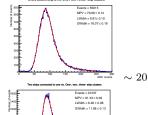
$$\Phi=25^\circ$$

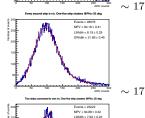
Events = 16362

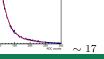

MPV = 98.89 ± 0.51

LWidth = 7.35 ± 0.35

GWidth = 30.29 ± 0.57


GWidth = 23.41± 0.39





Summary:

- * STS will provide track reconstruction and momentum determination for charged particles @CBM experiment.
- * Signal-over-Noise for non-irradiated sensors is \sim 40 for p- and n-side.
- * The prototype sensors from two vendors show a reduction of charge collection by 10% to 20% after irradiation to twice the maximum neutron fluence expected in the CBM experiment.
- * S/N for final unit (sensor + cable + read-out) to be studied.