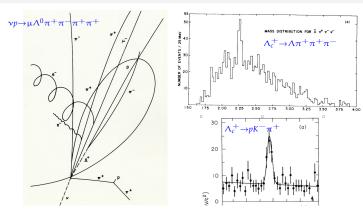
Λ_c Physics at BESIII

Weiping Wang (On behalf of BESIII Collabration)

State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

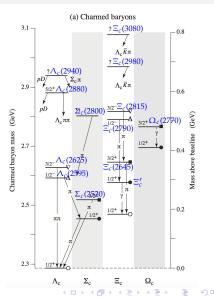
The 5th Edition of Workshop on Physics at FAIR



Outline

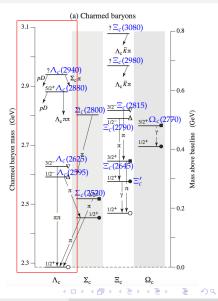
- Introduction
- The production of Λ_c
- Hadronic decays
- Semi-leptonic decays
- Inclusive decay
- Summary

The discovery of Λ_c^+

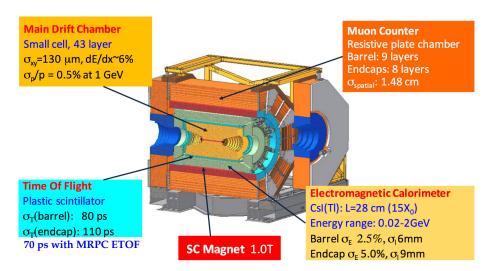


- First hint of charmed baryon $\Sigma_c^{++} \rightarrow \Lambda_c^+ \pi^+$ at BNL in 1975. PRL 34, 1125 (1975)
- The Λ_c^+ is firstly evidenced at Fermi Lab in 1976. PRL 37, 882 (1975)
- MarkII firstly established Λ_c^+ in 1980. PRL 44, 10 (1980)

Charmed Baryon family

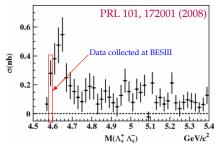

- Singly Charmed Baryons:
 - ground states: Λ_c^+ , Σ_c , $\Xi_c^{(\prime)}$, Ω_c .
 - excited states
- No observation of doubly or triply charmed baryons
- \Box Λ_c^+ : decays only weakly
- \square Σ_c : $B(\Sigma_c \rightarrow \Lambda_c^+ \pi) \sim 100\%$
- □ Ξ_c : decays only weakly; no absolute BF measured, most are ratios relative to $\Xi^-\pi^+(\pi^+)$
- $\ \square$ Ω_c : decays only weakly; no absolute BF measured

Λ_c^+ : cornerstone of charmed baryon spectroscopy



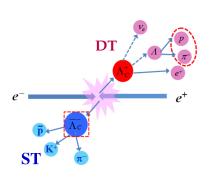
- ► Quark component: a heavy quark (c) with an unexcited spin-zero di-quark (ud)
- ► The lightest charmed baryon: $m_{\Delta c} = \frac{2286.48 \text{ MeV}}{1.00 \text{ MeV}}$
- ▶ Most of the charmed baryon will eventually decay to Λ_c
- ► The Λ_c is one of the important tagging hadrons in c-quark counting in the productions at high energies.
- ► B($\Lambda_c^+ \to pK^-\pi^+$): dominant error for V_{ub} via Λ_b decay

BEPC = Beijing Electron Positron Collider


BESIII = Beijing Spectrometer III

Data sets of Λ_c^+ at BESIII

Data sample:


\mathcal{L}_{int} (pb ⁻¹)
47.67
8.545
8.162
566.9

- ▶ At $\sqrt{s} = 4.5995$ GeV, the hadronic, semi-leptonic and inclusive decays of Λ_c^+ can be measured directly
- ► The samples make precise measurement of the Born cross section line-shape of $e^+e^- \to \Lambda_c^+ \bar{\Lambda}_c^-$ near threshold possible
- ▶ At $\sqrt{s} = 4.5745$ and 4.5995 GeV, the polar angular distribution of Λ_c can be studied and the $|G_E|/|G_M|$ ratios can be extracted

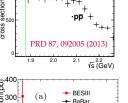
These samples enable systematical study of the Λ_c^+ for the first time

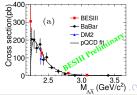
Single Tag (ST) and Double Tag (DT) method

- Single Tag:

 - ► $\Delta E = E E_{\text{beam}}$ ► $M_{BC}c^2 = \sqrt{E_{\text{beam}}^2 |\overrightarrow{p}|^2}$
 - Double Tag:
 - $U_{\text{miss}} = E_{\text{miss}} c |\overrightarrow{p}_{\text{miss}}|$
- Branching Fraction (BF):

$$\blacktriangleright \ \mathcal{B}_i = \frac{N_{ij}^{DT}}{N_i^{ST}} \frac{\varepsilon_j}{\varepsilon_{ij}}$$

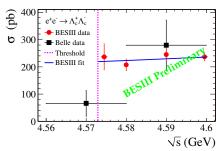

- Only two body process near threshold and clean background
- Many systematics canceled in directly measurement of BF
- Neutron and neutrino can be traced with missing mass technique


The production of Λ_c^+

The Born cross section of the reaction $e^+e^- \to \gamma^* \to B\bar{B}$ can be parameterized in terms of electromagnetic form factors:

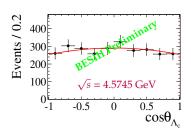
$$\sigma_{BB}(q) = \frac{4\pi\alpha^2 C\beta}{3q^2} [|G_M(q)|^2 + \frac{1}{2\tau} |G_E(q)|^2]$$

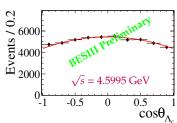
- Baryon velocity $\beta = \sqrt{1 4m_B^2 c^4/q^2}$, $\tau = q^2/(4m_B^2 c^4)$
- ▶ For charged *B*, the Coulomb factor C will results in a non-zero cross section at threshold
- $e^+e^- \rightarrow p\bar{p}$: an enhancement and wide-range plateau in the line-shape
- $e^+e^- \rightarrow \Lambda \bar{\Lambda}$: non-zero cross section near threshold
- It can be anticipate that Λ_c^+ has a similar behaviour with proton
- Belle collaboration has measured the cross section of $e^+e^- \rightarrow \Lambda_c^+ \bar{\Lambda}_c^-$ using ISR technique PRL 101, 172001 (2008)



Cross section of $e^+e^- \to \Lambda_c^+ \bar{\Lambda}_c^-$ near threshold

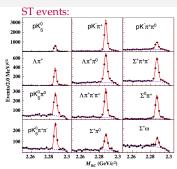
BESIII preliminary results:

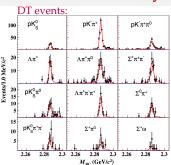

\sqrt{s} (GeV)	σ (pb)
4.5745	$236 \pm 11 \pm 46$
4.580	$207 \pm 17 \pm 13$
4.590	$245 \pm 19 \pm 16$
4.5995	$237\pm3\pm15$


- ▶ 10 hadronic decays of Λ_c are employed
- Single Tag method ($\Delta E \& M_{BC}$) is used
- Λ_c^+ and $\bar{\Lambda}_c^-$ are reconstructed independently
- Total cross sections are obtained from weighted average

- The cross sections are measured with unprecedented precision
- Enhanced cross section of reaction $e^+e^- \to \Lambda_c^+ \bar{\Lambda}_c^-$ near threshold is discerned for the first time
- The Coulomb enhanced factor?

Scattering angular distribution of Λ_c


- Studied at 4.5745 and 4.5995 GeV only
- ► The bin-by-bin efficiency correction is applied on the total yields
- Combined the corrected yields from Λ_c^+ and $\bar{\Lambda}_c^-$ bins
- The χ^2 fit on the angular distribution with shape $1 + \alpha_{\Lambda_c} \cos^2 \theta$

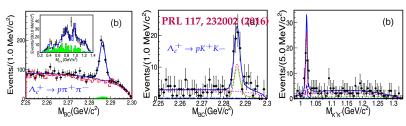

BESIII preliminary results:

\sqrt{s} (MeV)	α_{Λ_c}	$ G_E/G_M $
4.5745	$-0.13 \pm 0.12 \pm 0.08$	$1.14 \pm 0.14 \pm 0.07$
4.5995	$-0.20 \pm 0.04 \pm 0.02$	$1.23 \pm 0.05 \pm 0.03$

• This is the first time that the $|G_E/G_M|$ ratios of Λ_c are measured near threshold

BF of Cabibbo-Favored Hadronic decays of Λ_c

PRI.	116.	052001	(2016)	

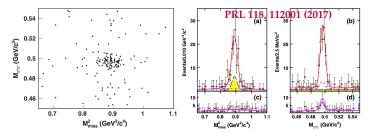

- $N_i^{ST} = N_{Tot.} \mathcal{B}_j \, \varepsilon_j$
- $ightharpoonup N_{ij}^{DT} = N_{Tot.} \mathcal{B}_i \mathcal{B}_j \varepsilon_{ij}$
- $\blacktriangleright \ \ \mathcal{B}_i = \frac{N_{ij}^{DT}}{N_i^{ST}} \frac{\varepsilon_j}{\varepsilon_{ij}}$

Mode	This work (%)	PDG (%)
pK_S^0	$1.52 \pm 0.08 \pm 0.03$	1.15 ± 0.30
$pK^-\pi^+$	$5.84 \pm 0.27 \pm 0.23$	5.0 ± 1.3
$pK_S^0\pi^0$	$1.87 \pm 0.13 \pm 0.05$	1.65 ± 0.50
$pK_{S}^{0}\pi^{+}\pi^{-}$	$1.53 \pm 0.11 \pm 0.09$	1.30 ± 0.35
$pK^{-}\pi^{+}\pi^{0}$	$4.53 \pm 0.23 \pm 0.30$	3.4 ± 1.0
$\Lambda \pi^+$	$1.24 \pm 0.07 \pm 0.03$	1.07 ± 0.28
$\Lambda \pi^+ \pi^0$	$7.01 \pm 0.37 \pm 0.19$	3.6 ± 1.3
$\Lambda \pi^+ \pi^- \pi^+$	$3.81 \pm 0.24 \pm 0.18$	2.6 ± 0.7
$\Sigma^0 \pi^+$	$1.27 \pm 0.08 \pm 0.03$	1.05 ± 0.28
$\Sigma^{+}\pi^{0}$	$1.18 \pm 0.10 \pm 0.03$	1.00 ± 0.34
$\Sigma^{+}\pi^{+}\pi^{-}$	$4.25 \pm 0.24 \pm 0.20$	3.6 ± 1.0
$\Sigma^+\omega$	$1.56 \pm 0.20 \pm 0.07$	2.7 ± 1.0

- The first direct measurement of the Λ_c^+ near the threshold
- BF of $pK^-\pi^+$ is consistent with the measurement of Belle
- Precisions of the other 11 modes improved significantly

$\Lambda_c^+ \to p K^+ K^-$ and $\Lambda_c^+ \to p \pi^+ \pi^-$

- ☐ Sensitive to nonfactorizable contributions from W-exchange diagrams
- $\ \square \ \Lambda_c^+ \rightarrow p \phi$ is particular interest due to only internal W-emission diagrams

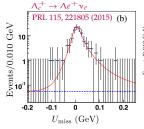

Decay modes	$\mathcal{B}_{\text{mode}}/\mathcal{B}_{\text{ref}}$ (This work)	$\mathcal{B}_{\text{mode}}/\mathcal{B}_{\text{ref}}$ (PDG average)
$\Lambda_c^+ \rightarrow p \pi^+ \pi^-$	$(6.70 \pm 0.48 \pm 0.25) \times 10^{-2}$	$(6.9 \pm 3.6) \times 10^{-2}$
$\Lambda_c^+ \rightarrow p\phi$	$(1.81 \pm 0.33 \pm 0.13) \times 10^{-2}$	$(1.64 \pm 0.32) \times 10^{-2}$
$\Lambda_c^+ \rightarrow pK^+K^- \text{ (non-}\phi\text{)}$	$(9.36 \pm 2.22 \pm 0.71) \times 10^{-3}$	$(7 \pm 2 \pm 2) \times 10^{-3}$
-	\mathcal{B}_{mode} (This work)	\mathcal{B}_{mode} (PDG average)
$\Lambda_c^+ \rightarrow p \pi^+ \pi^-$	$(3.91 \pm 0.28 \pm 0.15 \pm 0.24) \times 10^{-3}$	$(3.5 \pm 2.0) \times 10^{-3}$
$\Lambda_c^+ \rightarrow p\phi$	$(1.06 \pm 0.19 \pm 0.08 \pm 0.06) \times 10^{-3}$	$(8.2 \pm 2.7) \times 10^{-4}$
$\Lambda_c^+ \rightarrow pK^+K^- \text{ (non-}\phi\text{)}$	$(5.47 \pm 1.30 \pm 0.41 \pm 0.33) \times 10^{-4}$	$(3.5 \pm 1.7) \times 10^{-4}$

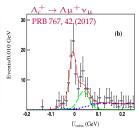
- Single tag method is used
- Using the decay $pK^-\pi^+$ as the reference mode

First observation of the SCS decays of $\Lambda_c^+ \to p \pi^+ \pi^-$ Improved precision of decays $\Lambda_c^+ \to p K^+ K^-$ (non- ϕ) and $\Lambda_c^+ \to p \phi$

$$\Lambda_c^+ \to n K_S^0 \pi^+$$

- □ A precision test for the isospin symmetry and final states interaction
- □ DT method: $M_{miss}^2 \equiv E_{miss}^2/c^4 |\vec{p}_{miss}|^2/c^2$



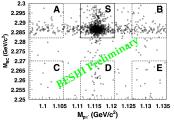

- $\mathcal{B}(\Lambda_c^+ \to nK_S^0\pi^+) = (1.82 \pm 0.23 \pm 0.11)\%$
- $\mathcal{B}(\Lambda_c^+ \to n\bar{K}^0\pi^+)/\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+) = 0.62 \pm 0.09$
- $\mathcal{B}(\Lambda_c^+ \to n\bar{K}^0\pi^+)/\mathcal{B}(\Lambda_c^+ \to p\bar{K}^0\pi^0) = 0.97 \pm 0.16$

The first direct measurement of the Λ_c^+ decay involving the neutron in the final state

$\Lambda_c^+ \to \Lambda e^+ \nu_e$ and $\Lambda_c^+ \to \Lambda \mu^+ \nu_\mu$

- A stringent test for nonperturbative aspects of strong interaction theory
- The key ingredient in calibrating Lattice QCD calculations
- There is no absolute measurement of Λ_c^+ semi-leptonic decay yet
- Mutually confirm and test the leptonic university

- DT method is used, 11 modes are tagged
- missing mass technique at threshold
- $U_{\text{miss}} = E_{\text{miss}} c |\overrightarrow{p}|_{\text{miss}}$


- \blacktriangleright $\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e) = (3.63 \pm 0.38 \pm 0.20)\%$
- $\mathcal{B}(\Lambda_c^+ \to \Lambda \mu^+ \nu_{\mu}) = (3.49 \pm 0.46 \pm 0.27)\%$
- $\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e)/\mathcal{B}(\Lambda_c^+ \to \Lambda \mu^+ \nu_\mu) = 0.96 \pm 0.16 \pm 0.04$

The first direct measurement of the semi-leptonic decay of Λ_c^+

$\Lambda_c^+ \to \Lambda + X$

- \square This decay is mediated by $c \to s$ and dominates the lifetime of Λ_c^+
- \square Help to understand the quark structure and decay dynamics of Λ_c^+
- Provide an essential input for decays of b-flavored hadrons

- ▶ DT method is used, modes $\bar{p}K^+\pi^-$ and $\bar{p}K_S^0$ are singly tagged.
- $A_{cp} \equiv \frac{\mathcal{B}(\Lambda_c^+ \to \Lambda + X) \mathcal{B}(\bar{\Lambda}_c^- \to \bar{\Lambda} + X)}{\mathcal{B}(\Lambda_c^+ \to \Lambda + X) \mathcal{B}(\bar{\Lambda}_c^- \to \bar{\Lambda} + X)}$

The preliminary results:

$$\mathcal{B}(\Lambda_c^+ \to \Lambda + X) = (38.2^{+2.8}_{-2.2} \pm 0.6)\%$$
 and $\mathcal{A}_{cp} = (2.1^{+7.0}_{-6.6} \pm 1.1)\%$

- Total known exclusive BFs of $\Lambda_c^+ \to \Lambda + X$ is (24.5 \pm 2.1)%. This indicates many unknown decay modes
- No *CP* violation is observed in current precision

Summary

- Based on the large data sample collected near threshold, BESIII can systematically study the physics of Λ_c^+
- The production behaviour of Λ_c^+ is studied from Born cross section and scattering angle distribution
- Absolute BFs of Λ_c^+ are measured directly at BESIII, including hadronic and semi-leptonic decays
- Fruitful results of Λ_c^+ decays are achieved at BESIII, which are important to understand the property of Λ_c^+

Thanks for your attention!

