

Forward and Endcap EMC

M. Kavatsyuk for the PANDA Collaboration

- ~15000 PbWO₄ crystals operated at -25°C
- Photo detectors:
 - Large Area Avalanche Photodiodes (2 per crystal; Barel EMC; outer part of Endcap EMC?)
 - Vacuum Photo Triodes (Endcap EMC)
- Preamplifiers:
 - ASIC APFEL (preamp.+shaper; 2 channels; 2 gains outputs per ch; designed for LAAPD; developed at GSI)
 - Discrete LNP (designed for LAAPD and VPT developed at Basel)
- Prototypes:
 - Barel EMC in operation: 60 crystals; LAAPD; LNP
 - Endcap EMC in development: 192 crystals; VPT+LNP, LAAPD+ASIC and LAAPD+LNP

EMC Requirements (TDR summary)

	Required performance value		
Common properties			
energy resolution σ_E/E	$\leq 1\% \oplus \frac{\leq 2\%}{\sqrt{E/\text{GeV}}}$		
energy threshold (photons) E_{thres}	$10 \mathrm{MeV}$ (20 MeV tolerable)		
energy threshold (single crystal) E_{xtl}	$3{ m MeV}$		
rms noise (energy equiv.) $\sigma_{E,noise}$	$1{ m MeV}$		
angular coverage $\% 4\pi$	99%		
mean-time-between-failures t_{mtbf}	2000 у		
(for individual channel)			
Subdetector specific properties	backward	barrel	forward
	$(\geq 140^\circ)$	$(\geq 22^\circ)$	$(\geq 5^{\circ})$
energy range from E_{thres} to	$0.7{ m GeV}$	$7.3{ m GeV}$	$14.6 \mathrm{GeV}$
angular equivalent of crystal size θ	4°		1°
spatial resolution σ_{θ}	0.5°	0.3°	0.1°
maximum signal load f_{γ} $(E_{\gamma} > E_{xtl})$	$60\mathrm{kHz}$		$500\mathrm{kHz}$
(pp-events) maximum signal load f_{γ} ($E_{\gamma} > E_{xtl}$)	$100 \mathrm{kHz}$		$500\mathrm{kHz}$
(all events) shaping time t_s	$400\mathrm{ns}$		$100\mathrm{ns}$
radiation hardness	$0.15{ m Gy}$	$7{ m Gy}$	$125\mathrm{Gy}$
(maximum annual dose pp-events)			
radiation hardness	$10{ m Gy}$		$125\mathrm{Gy}$
(maximum annual dose from all events)			

Pulse Shapes

One time bin corresponds to 10ns

Pulse Shapes

One time bin corresponds to 10ns

Energy Resolution KVI tagged photon measurements at Mainz

SADC readout compared with conventional QDC, advantages:

- no analogue delay lines
- possibility to cower total required dynamic range
- Digital filtering for noise reduction (1.4 MeV \rightarrow 0.3 MeV)

- Role of Digitizers:
 - extract energy, time
- Role of Multiplexers:
 - find clusters
 - calculate Zernike moments

- EMC Prototypes (Proto 60 and Proto 192) allowed or will allow to test performance:
 - LAAPD+LNP was tested (fulfil TDR requirements)
 - LAAPD+ASIC
 - VPT+LNP
- Digitizer prototypes have to be designed
- Hardware implementation of Feature-extraction algorithms has to be tested

