Results and prospects for low-energy QCD processes from COMPASS

Jan Friedrich

Physik-Department, TU München COMPASS collaboration

International Conference on Exotic Atoms and Related Topics - EXA2017 13 September, 2017

COmmon Muon and Proton Apparatus for Structure and Spectroscopy

CCmmon Muon and Proton Apparatus for Structure and Spectroscopy

CERN SPS: protons \sim 400 GeV

(5-10 sec spills)

- secondary π , K, (\overline{p}) : up to 2.10⁷/s (typ. 5.10⁶/s) Nov. 2004, 2008-09, 2012: hadron spectroscopy & Primakoff reactions
- tertiary muons: 4.10⁷ / s 2002-04, 2006-07, 2010-11: spin structure of the nucleon

COMPASS

Experimental Setup

Technische Universität München

Fixed-target experiment

COMPASS

Experimental Setup

Fixed-target experiment

structure-dependent response to outer e.m. fields:

$$\Delta H = -rac{1}{2}\left(lpha \cdot ec{E}^2 + eta \cdot ec{B}^2
ight)$$

- well-known for atoms and molecules
- measured on 10%-level for nucleons (also spin dependent)

pion polarisabilities α_{π} , β_{π} in units of 10^{-4} fm³

size of the pion \sim 1 fm³ [cf. atoms: polarisability \approx size \approx 1 ų]

Theory: ChPT (2-loop) prediction: $\begin{array}{rcl} lpha_{\pi}-eta_{\pi}&=&5.7\pm1.0\\ lpha_{\pi}+eta_{\pi}&=&0.16\pm0.1 \end{array}$

experiments for $\alpha_{\pi} - \beta_{\pi}$ lie in the range $4 \cdots 14$

 $(\alpha_{\pi} + \beta_{\pi} = 0 \text{ assumed})$

ChPT: chiral perturbation theory: low-energy expansion of QCD

pion polarisabilities α_{π} , β_{π} in units of 10^{-4} fm³

Theory: ChPT (2-loop) prediction: $egin{array}{ccc} lpha_{\pi} &=& 2.93\pm0.5 \ eta_{\pi} &=& -2.77\pm0.5 \end{array}$

input to theory: measurement of the radiative $\pi^- \rightarrow e^- \nu_e \gamma$ decay PIBETA experiment at PSI, PRL 103 (2009) 051802

experiments for α_{π} lie in the range $2 \cdots 7$

$\pi \gamma \rightarrow \pi \gamma$

• Two kinematic variables, in CM: total energy \sqrt{s} , scattering angle θ_{cm}

$$\frac{d\sigma_{\pi\gamma}}{d\Omega_{cm}} = \frac{\alpha^2 (s^2 z_+^2 + m_\pi^4 z_-^2)}{s(sz_+ + m_\pi^2 z_-)^2} - \frac{\alpha m_\pi^3 (s - m_\pi^2)^2}{4s^2 (sz_+ + m_\pi^2 z_-)} \cdot \mathcal{P}$$
$$\mathcal{P} = z_-^2 (\alpha_\pi - \beta_\pi) + \frac{s^2}{m_\pi^4} z_+^2 (\alpha_\pi + \beta_\pi) - \frac{(s - m_\pi^2)^2}{24s} z_-^3 (\alpha_2 - \beta_2)$$
$$z_{\pm} = 1 \pm \cos \theta_{cm}$$

$$\pi \gamma \rightarrow \pi \gamma$$

• Two kinematic variables, in CM: total energy \sqrt{s} , scattering angle θ_{cm}

$$\frac{d\sigma_{\pi\gamma}}{d\Omega_{cm}} = \frac{\alpha^2 (s^2 z_+^2 + m_\pi^4 z_-^2)}{s(sz_+ + m_\pi^2 z_-)^2} - \frac{\alpha m_\pi^3 (s - m_\pi^2)^2}{4s^2 (sz_+ + m_\pi^2 z_-)} \cdot \mathcal{P}$$
$$\mathcal{P} = z_-^2 (\alpha_\pi - \beta_\pi) + \frac{s^2}{m_\pi^4} z_+^2 (\alpha_\pi + \beta_\pi) - \frac{(s - m_\pi^2)^2}{24s} z_-^3 (\alpha_2 - \beta_2)$$
$$z_{\pm} = 1 \pm \cos\theta_{cm}$$

(A.Z

Primakoff processes

Pion polarisability: world data before COMPASS

GIS'06: ChPT prediction, Gasser, Ivanov, Sainio, NPB745 (2006), plots: T. Nagel, PhD Fil'kov analysis objected by Pasquini, Drechsel, Scherer PRC81, 029802 (2010)

 $O^2 \ll m_{\pi}^2$

(A,Z)

Principle of the Primakoff technique

COMPASS ChPT & Pion Polarisability Result Other Channels Summary Outlook

- high-energetic pion beam on 4mm nickel disk
- observe scattered pions in coincidence with produced hard photons with energy fraction $x_{\gamma} = E_{\gamma}/E_{beam}$
- study the cross-section shape

Extraction of the pion polarisability

Identify exclusive reactions

 $\pi\gamma_{\{\mathsf{Ni}
ightarrow\mathsf{Ni'}\}}
ightarrow\pi\gamma$

at smallest momentum transfer $< 0.001 \ {\rm GeV^2}/c^2$

• Assuming $\alpha_{\pi} + \beta_{\pi} = 0$, from the cross-section

$$\left| R = \frac{\sigma(x_{\gamma})}{\sigma_{\alpha_{\pi}=0}(x_{\gamma})} = \frac{N_{meas}(x_{\gamma})}{N_{sim}(x_{\gamma})} = 1 - \frac{3}{2} \cdot \frac{m_{\pi}^3}{\alpha} \cdot \frac{x_{\gamma}^2}{1 - x_{\gamma}} \alpha_{\pi} \right|$$

is derived, depending on $x_{\gamma} = E_{\gamma(lab)}/E_{Beam}$. Measuring *R* the polarisability α_{π} can be concluded.

Depends on MC simulation of the acceptance, control systematics by

 $\mu \gamma_{\{{\sf Ni}
ightarrow{{\sf Ni}'}\}}
ightarrow \mu \gamma$

and

$$K^- o \pi^- \pi^0 o \pi \gamma \gamma$$

Extraction of the pion polarisability

Identify exclusive reactions

 $\pi\gamma_{\{\mathsf{Ni}
ightarrow\mathsf{Ni'}\}}
ightarrow\pi\gamma$

at smallest momentum transfer $< 0.001 \ {\rm GeV^2}/c^2$

• Assuming $\alpha_{\pi} + \beta_{\pi} = 0$, from the cross-section

$$\left| R = \frac{\sigma(x_{\gamma})}{\sigma_{\alpha_{\pi}=0}(x_{\gamma})} = \frac{N_{meas}(x_{\gamma})}{N_{sim}(x_{\gamma})} = 1 - \frac{3}{2} \cdot \frac{m_{\pi}^3}{\alpha} \cdot \frac{x_{\gamma}^2}{1 - x_{\gamma}} \alpha_{\pi} \right|$$

is derived, depending on $x_{\gamma} = E_{\gamma(lab)}/E_{Beam}$. Measuring *R* the polarisability α_{π} can be concluded.

Depends on MC simulation of the acceptance, control systematics by

$$\mu \gamma_{\{\mathsf{Ni} o \mathsf{Ni}'\}} o \mu \gamma$$

and

$$K^- o \pi^- \pi^0 o \pi \gamma \gamma$$

COMPASS ChPT & Pion Polarisability Result Other Channels Summary Outlook

Polarisability effect in Primakoff technique

- Charged pions traverse the nuclear electric field
 - typical field strength at $d = 5R_{Ni}$: $E \approx 300 \text{ kV/fm}$
- Bremsstrahlung process:
 - particles scatter off equivalent photons
 - tiny momentum transfer $Q^2 \approx 10^{-5} \, {\rm GeV^2}/c^2$
 - pion/muon (quasi-)real Compton scattering
- Polarisability contribution
 - Compton cross-section typically diminished
 - corresponding charge separation ≈ 10⁻⁵ fm · e

COMPASS ChPT & Pion Polarisability Result Other Channels Summary Outlook

Polarisability effect in Primakoff technique

- Charged pions traverse the nuclear electric field
 - typical field strength at $d = 5R_{Ni}$:

spatial resolution of tracks ${\sim}10\mu m$ angular resolution of photons ${\sim}30\mu rad$

ECAL2: 3000 cells of different types

ECAL2: the quest for precision

Figure 3.5: Profile of energy deviations shown for 1/4 of a shashlik block and for muon data photons within the range 133 GeV $< E_{\gamma} < 152$ GeV .

Figure 3.6: Technical drawing of a full shashlik cell to be compared with the figure to the left.

from: Th. Nagel, PhD thesis TUM 2012

- Energy balance $\Delta E = E_{\pi} + E_{\gamma} E_{\text{Beam}}$
- Exclusivity peak $\sigma \approx$ 2.6 GeV (1.4%)
- \sim 63.000 exclusive events ($x_{\gamma} >$ 0.4) (Serpukhov \sim 7000 for $x_{\gamma} >$ 0.5)

Primakoff peak

- $\Delta Q_T \approx 12$ MeV/c (190 GeV/c beam \rightarrow requires few- μ rad angular resolution)
- first diffractive minimum on Ni nucleus at $Q \approx 190 \text{ MeV}/c$
- data a little more narrow than simulation \rightarrow negative interference?

- muon control measurement: pure electromagnetic interaction
- e.m. nuclear effects well understood

CERN

Photon energy spectra for muon and pion beam

пп

Technische Universität München

COMPASS ChPT & Pion Polarisability Result Other Channels Summary Outlook

Pion polarisability: COMPASS result

source of systematic uncertainty	estimated magnitude $CL = 68\%$ [10^{-4} fm ³]
determination of tracking-detector efficiencies	0.5
treatment of radiative corrections	0.3
subtraction of π^0 background	0.2
strong interaction background	0.2
pion-electron elastic scattering	0.2
contribution of muons in the beam	0.05
quadratic sum	0.7

source of systematic uncertainty	estimated $CL = 68\%$	l magnitude [10 ⁻⁴ fm ³]
determination of tracking-detector efficiencies		0.5
treatment of radiative corrections		0.3
subtraction of π^0 background		0.2
strong interaction background		0.2
pion-electron elastic scattering		0.2
contribution of muons in the beam		0.05
quadratic sum		0.7

COMPASS result for the pion polarisability:

 α_{π} = (2.0 ± 0.6_{stat} ± 0.7_{syst}) × 10⁻⁴ fm³

with
$$\alpha_{\pi} = -\beta_{\pi}$$
 assumed

Pion polarisability: world data including COMPASS

- The new COMPASS result is in significant tension with the earlier measurements of the pion polarisability
- The expectation from ChPT is confirmed within uncertainties

Technische Universität Müncher

Radiative corrections (Compton scattering part)

Nucl.Phys. A837 (2010), Eur.Phys.J. A39 (2009) 71

- Higher order pion dynamics: Dispersion relations vs. ChPT (B. Pasquini, OK)
- pion polarisability from lattice QCD: first studies indicate small value (large uncertainty)

Access to $\pi\gamma$ -initiated reactions via the Primakoff effect

$$\pi^{-} + \gamma \rightarrow \begin{cases} \pi^{-} + \gamma \\ \pi^{-} + \pi^{0} / \eta \\ \pi^{-} + \pi^{0} + \pi^{0} \\ \pi^{-} + \pi^{-} + \pi^{+} \\ \pi^{-} + \pi^{-} + \pi^{+} + \pi^{-} + \pi^{+} \\ \pi^{-} + \dots \end{cases}$$

analogously: Kaon-induced reactions $K^- + \gamma \rightarrow \cdots$

Chiral anomaly in $\pi^- \gamma \rightarrow \pi^- \pi^0$

- contributions from chiral anomaly $F_{3\pi}$ and the $\rho(770)$ resonance
- can be described by a dispersive method → increased sensitivity to the chiral anomaly
- uncertainty estimate < 1%

Hoferichter et al., PRD86 (2012) 116009

COMPASS ChPT & Pion Polarisability Result Other Channels Summary Outlook

Chiral dynamics in $\pi\gamma \rightarrow 3\pi$

relevant physics: pion scattering lengths, pion loop contributions

COMPASS ChPT & Pion Polarisability Result Other Channels Summary Outlook

Radiative Coupling of $a_2(1320)$ and $\pi_2(1670)$

- $\Leftrightarrow \text{ meson wave functions: } \Gamma_{i \to f} \propto |\langle \Psi_f | \, e^{-i\vec{q}\cdot\vec{r}} \, \hat{\epsilon} \cdot \vec{p} \, |\Psi_i \rangle \,|^2$
 - normalization via beam kaon decays
 - large Coulomb correction

published in EPJ A50 (2014) 79

Technische Universität Müncher

Summary

Measurement of the pion polarisability at COMPASS

• via the Primakoff reaction, COMPASS has determined

 α_{π} = (2.0 \pm 0.6_{stat} \pm 0.7_{syst}) \times 10⁻⁴ fm³

- most direct access to the $\pi\gamma \to \pi\gamma$ process
- most precise experimental determination
- control of systematics: $\mu\gamma \rightarrow \mu\gamma$, $K^- \rightarrow \pi^-\pi^0$
- Related topics at COMPASS: radiative widths and chiral dynamics in $\pi^-\gamma \rightarrow \pi^-\pi^0$ and $\pi\gamma \rightarrow \pi\pi\pi$ reactions
 - chiral anomaly coming soon
- High-statistics run 2012
 - separate determination of α_{π} and β_{π}
 - s-dependent quadrupole polarisabilities
 - · First studies for a kaon polarisability measurement

Citation: C. Patrigrami et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016)

 $I^{G}(I^{P}) = 1^{-}(0^{-})$

π ELECTRIC POLARIZABILITY α_{π}

See HOLSTEIN 14 for a general review on hadron polarizability.

VALUE (10-4 fm3)	EVTS	DOCUMENT ID	TECN	COMMENT
$2.0 \pm 0.6 \pm 0.7$	63k	¹ ADOLPH 15	A SPEC	$\pi^- \gamma \rightarrow \pi^- \gamma$ Compton scat

¹Value is derived assuming $\alpha_{\pi} = -\beta_{\pi}$.

 π^{\pm}

 $I^{G}(J^{PC}) = 1^{-}(1^{++})$

OMITTED FROM SUMMARY TABLE

a1(1420) MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
1414+15	¹ ADOLPH	15C	сомр	190 $\pi^- \rho \rightarrow$	$\pi^-\pi^+\pi^-\rho$
¹ Using the isobar model a	nd partial-wave an	alysis	with 88 v	vaves.	

some of the new COMPASS entries in the RPP2016 edition

Outlook: COMPASS++ and Beyond

ChPT & Pion Polarisability Result Other Channels Summary Outlook

More channels of interest for low-energy QCD

- Primakoff reaction with $\pi^-\eta$ final state
- π^0 lifetime

Mid-term future perspectives with conventional beams

- SIDIS on a transversely polarized deuteron target
- elastic muon-proton scattering at low momentum transfers
- Antiproton-induced hadron spectroscopy
- polarized-target DVCS and DY processes
- Longer-term future ideas with RF-separated beams
 - Kaon-induced hadron spectroscopy
 - Kaon-induced Drell-Yan processes

 $\Delta \Phi$ = 2 π (L f / c) ($\beta_1^{-1} - \beta_2^{-1}$) with $\beta_1^{-1} - \beta_2^{-1}$ = ($m_1^2 - m_2^2$)/2p²

principle of RF separation

COMPASS ChPT & Pion Polarisability Result Other Channels Summary Outlook

