KAONIC DEUTERIUM
 and
 Low-Energy Antikaon-Nucleon Interaction

with: Tsubasa Hoshino, Shota Ohnishi, Wataru Horiuchi, Tetsuo Hyodo arXiv:1705.06857

- Reminder of kaonic hydrogen and SIDDHARTA constraints
- Chiral $\mathbf{S U (3)}$ coupled-channels dynamics and $\overline{\mathbf{K}} \mathbf{N}$ potential
- Kaonic deuterium and three-body Schrödinger equation
- Generalized Deser-Trueman formula and its limitations
- Constraints for I = $\mathbf{1} \overline{\mathbf{K}} \mathrm{N}$ interaction from $\mathrm{K}^{-} \mathbf{d}$ atom
- Outlook: SIDDHARTA2 and J-PARC E57

KAONIC DEUTERIUM

- Antikaon-NN three-body system $\hat{H}=\sum_{i=1}^{3} \hat{T}_{i}-\hat{T}_{\mathrm{cm}}+\hat{V}_{23}^{N N}+\sum_{i=2}^{3}\left(\hat{V}_{1 i}^{\bar{K} N}+\hat{V}_{1 i}^{E M}\right)$

Energy shift and width of 1 S level:

$$
\Delta \mathrm{E}_{1 \mathrm{~S}}-\frac{\mathrm{i}}{2} \Gamma_{1 \mathrm{~S}}
$$

information about strong $\overline{\mathrm{K}} \mathrm{N}$ interaction close to threshold

THEORY of KAONIC DEUTERIUM

... long history as a challenging three-body problem
Faddeev integral equations (recent advanced results: J. Révai, Phys. Rev. C94 (2016) 054001)
Coordinate space methods
(this presentation: T. Hoshino et al., arXiv:1705.06857)

- High computational precision required at ALL length scales

THEORY of KAONIC DEUTERIUM

3-body coupled-channels Schrödinger equation

$$
\left(\begin{array}{cc}
\hat{H}_{K^{-}-p n} & \hat{V}_{12}^{\bar{K} N}+\hat{V}_{13}^{\bar{K} N} \\
\hat{V}_{12}^{\bar{K} N}+\hat{V}_{13}^{\bar{K} N} & \hat{H}_{\bar{K}^{0} n n}
\end{array}\right)\binom{\left|K^{-} p n\right\rangle}{\left.\left|\bar{K}^{0} n n\right\rangle\right\rangle}=E\binom{\left|K^{-} p n\right\rangle}{\left|\bar{K}^{0} n n\right\rangle}
$$

antikaon-nucleon interaction $\mathbf{K}^{-} \mathbf{p} \leftrightarrow \overline{\mathbf{K}}^{\mathbf{0}} \mathbf{n}$

nucleon-nucleon interaction

$$
\hat{H}_{K^{-} p n}=\sum_{i=1}^{3} \hat{T}_{i}-\hat{T}_{\mathrm{cm}}+\hat{V}_{23}^{N N}+\sum_{i=2}^{3}\left(\hat{V}_{1 i}^{\bar{K} N}+\hat{V}_{1 i}^{\mathrm{EM}}\right)
$$

$$
\hat{H}_{\bar{K}^{0} n n}=\sum_{i=1}^{3} \hat{T}_{i}-\hat{T}_{\mathrm{cm}}+\hat{V}_{23}^{N N}+\sum_{i=2}^{3} \hat{V}_{1 i}^{\bar{K} N}+\Delta M
$$

- Input:
$\overline{\mathbf{K}}^{0} \mathbf{n}$ interaction

kinetic energies
physical masses of antikaons and nucleons

CONSTRAINTS from KAONIC HYDROGEN

- SIDDHARTA

M. Bazzi et al. (SIDDHARTA collaboration)

Phys. Lett. B 704 (201I) II3
Nucl. Phys. A 88I (2012) 88

- Strong interaction

1s energy shift and width
Leading order (Weinberg-Tomozawa)
Chiral SU(3) Dynamics

B. Borasoy, R. Nissler, W.W.

Phys. Rev. Lett. 94 (2005) 213401
R. Nissler

Thesis 2008

$$
\begin{aligned}
-\varepsilon_{1 \mathbf{s}} & =\Delta \mathbf{E}=\mathbf{2 8 3} \pm \mathbf{3 6}(\text { stat }) \pm \mathbf{6}(\text { syst }) \quad \mathbf{e V} \\
\Gamma & =\mathbf{5 4 1} \pm 89(\text { stat }) \pm 22(\text { syst }) \mathbf{e V}
\end{aligned}
$$

Low-Energy $\overline{\mathbf{K}} \mathbf{N}$ Interactions

Framework:
 Non-perturbative Coupled Channels approach based on Chiral SU(3) Effective Field Theory
 Review: T. Hyodo, D. Jido : Prog. Part. Nucl. Phys. 67 (20I2) 55

- Leading s-wave meson-baryon interactions (Weinberg-Tomozawa)

$\bar{K} \mathbf{N}$ POTENTIAL

* Input for kaonic deuterium three-body calculation - designed to reproduce :
- Two-body scattering data and threshold branching ratios
- Kaonic hydrogen (SIDDHARTA) data
- $\Lambda(1405)$ and $\pi \Sigma$ mass spectra (coupled channels)

Kyoto $\overline{\mathrm{K}} \mathbf{N}$ POTENTIAL : tests

Test for kaonic hydrogen: Solve two-body eqn. including Coulomb

Mass	E-dep.	$\Delta \mathrm{E}(\mathrm{eV})$	$\Gamma(\mathrm{eV})$
physical Physical	Self consistent	283	607
masses Isospin	Self consistent	163	574
Physical	$E_{\bar{K} N}=0$	283	607
Expt. [31, 32]	(SIDDHARTA)	$\pm 36 \pm$	$\pm 89 \pm 22$

Calculated $\overline{\mathbf{K}} \mathbf{N}$ scattering lengths using physical and isospin-averaged masses for $\left(\mathbf{K}^{-}, \overline{\mathbf{K}}^{\mathbf{0}}\right)$ and (\mathbf{p}, \mathbf{n})

Mass	$a_{K^{-} p}(\mathrm{fm})$	$a_{K^{-p-\bar{K}^{0}}{ }_{n}(\mathrm{fm})}$	$a_{\bar{K}^{0} n}(\mathrm{fm})$	$a_{K^{-}{ }_{n}}(\mathrm{fm})$
Physical	$-0.66+i 0.89$	$-0.85+i 0.26$	$-0.40+i 1.03$	$0.58+i 0.78$
Isospin	$-0.40+i 0.81$	$-0.99+i 0.04$	$-0.40+i 0.81$	$0.58+i 0.77$

- Isospin breaking effects important close to threshold(s)

Solving the Three-Body Schrödinger Equation

(Hokkaido group: T. Hoshino, S. Ohnishi, W. Horiuchi)

- Large set of GAUSSIAN r-space basis functions covering
$0.1 \mathrm{fm}<r<1000 \mathrm{fm}$

$$
\sum_{j=1}^{N}\left(H_{i j}-E B_{i j}\right) C_{j}=0 \quad H_{i j}=\left\langle\Phi_{i}\right| H\left|\Phi_{j}\right\rangle \quad B_{i j}=\left\langle\Phi_{i} \mid \Phi_{j}\right\rangle
$$

Real part of 1S energy of kaonic deuterium

N	$\operatorname{Re} E_{1 S}(\mathrm{keV})$
1677	-9.687436
2511	-9.733493
2721	-9.735609
2806	-9.735677
2879	-9.735682

Convergence at eV precision requires $\quad N \sim 3000$

Primary basis sizes used:

$$
N \sim 4000
$$

KAONIC DEUTERIUM : results

- Energy spectrum of kaonic deuterium (relative to K-d threshold)
Δ Coulomb with point charge (2-body) :

$$
E_{1 S}=-10.406 \mathrm{keV} \quad E_{2 P}=E_{2 S}=-2.602 \mathrm{keV}
$$

Δ Full 3-body computation :

	$E_{1 S}(\mathrm{keV})$	$E_{2 P}(\mathrm{keV})$	$E_{2 S}(\mathrm{keV})$
Coulomb	-10.398	-2.602	-2.600
Coul. $+\bar{K} N$	$-9.736-i 0.508$	$-2.602-i 0.000$	$-2.517-i 0.067$

- Energy shift and width of 1 S level from $2 \mathrm{P} \rightarrow 1 \mathrm{~S}$ transition

$$
\Delta \mathrm{E}_{1 \mathrm{~S}}=670 \mathrm{eV} \quad \Gamma_{1 \mathrm{~S}}=1016 \mathrm{eV}
$$

- Uncertainty estimates:
$>$ Deuteron binding effect (subthreshold energy shift) :
$\sim 5 \%$ increase of energy shift, $\sim 10 \%$ increase of width
$\bar{K} N N \rightarrow Y N$ absorption: less than $\mathbf{2 \%}$ increase of width

Test of DESER type FORMULAE

- Improved Deser-Trueman formula U.-G. Meißner, U. Raha, A. Rusetsky : EPJ C35 (2004) 349 relates hadronic atom 1S energy shift and width and hadron-nucleus scattering length a

$$
\Delta E-\frac{i \Gamma}{2}=-2 \mu^{2} \alpha^{3} a[1-2 \mu \alpha(\ln \alpha-1) a]
$$

- Resummed version

$$
\Delta E-\frac{i \Gamma}{2}=-\frac{2 \mu^{2} \alpha^{3} a}{1+2 \mu \alpha(\ln \alpha-1) a}
$$

- ...works well for kaonic hydrogen (with Kyoto $\overline{\mathbf{K}} \mathbf{N}$ potential) :

	$\Delta E(\mathrm{eV})$	$\Gamma(\mathrm{eV})$
Full Schrödinger equation	283	607
Improved Deser formula	293	596
Resummed formula	284	605

Test of the DESER type formulae for KAONIC DEUTERIUM

$$
\Delta E-\frac{i \Gamma}{2}=-2 \mu^{2} \alpha^{3} a[1-2 \mu \alpha(\ln \alpha-1) a] \quad \text { or } \quad \Delta E-\frac{i \Gamma}{2}=-\frac{2 \mu^{2} \alpha^{3} a}{1+2 \mu \alpha(\ln \alpha-1) a}
$$

- How does it work for kaonic deuterium ?
(fixed-center approximation, multiple scattering series)

K-d scattering length

$$
\begin{array}{cc}
a_{K^{-} d}=\frac{\mu_{K^{-}}}{m_{K^{-}}} \int d^{3} \boldsymbol{r} \rho_{d}(\boldsymbol{r}) \tilde{a}_{K^{-}}(r) & \tilde{a}_{p} \equiv \tilde{a}_{K^{-} p} \quad \tilde{a}_{n} \equiv \tilde{a}_{K^{-} n} \\
\tilde{a}_{K^{-} d}(r)=\frac{\tilde{a}_{p}+\tilde{a}_{n}+\left(2 \tilde{a}_{p} \tilde{a}_{n}-\tilde{a}_{\mathrm{ex}}^{2}\right) / r-2 \tilde{a}_{\mathrm{ex}}^{2} \tilde{a}_{n} / r^{2}}{1-\tilde{a}_{p} \tilde{a}_{n} / r^{2}+\tilde{a}_{\mathrm{ex}}^{2} \tilde{a}_{n} / r^{3}} & \tilde{a}_{\mathrm{ex}}^{2} \equiv \tilde{a}_{K^{-} p-\bar{K}_{n}{ }^{0}}^{2} /\left(1+\tilde{a}_{\bar{K}^{0} n} / r\right) \\
\tilde{a}_{\bar{K} N} \equiv \frac{m_{K}}{\mu_{\bar{K} N}} a_{\bar{K} N}
\end{array}
$$

$$
>a_{K-d}=(-1.42+i 1.60) \mathrm{fm}
$$

	$\Delta E(\mathrm{eV})$	$\Gamma(\mathrm{eV})$
Full Schrödinger equation	670	1016
Improved Deser formula	910	989
Resummed formula	818	1188

- Assumptions behind Deser-Trueman formula NOT reliable for K-d

OUTLOOK

- SIDDHARTA2
in preparation at DA Φ NE, Frascati

C. Curceanu et al.

Nucl. Phys. A 914 (2013) 25 I

- Expectation : significantly improved constraint
 on $\mathrm{I}=1$ component of $\overline{\mathrm{K}} \mathrm{N}$ interaction if deuterium level shift and width can be determined within $\sim 25 \%$ accuracy

SUMMARY and CONCLUSIONS

Progress in KAONIC DEUTERIUM calculations :

- Chiral SU(3) - based $\overline{\mathbf{K}} \mathbf{N}$ STRONG (short-range) interaction
- $\mathbf{K}^{-} \mathbf{p}$ COULOMB (long-range) interaction

Advanced three-body computations (eV precision)

Solving $\overline{\mathbf{K}} \mathbf{N N}$ Schrödinger equation with complex $\overline{\mathbf{K}} \mathbf{N}$ potential :
Δ Strong interaction energy shift and width

$$
\Delta \mathrm{E}_{1 \mathrm{~S}} \simeq 0.7 \mathrm{keV} \quad \Gamma_{1 \mathrm{~S}} \simeq 1.0 \mathrm{keV} \quad(\sim 10 \% \text { uncertainty })
$$

Consistent with advanced Faddeev calculations (J. Révai, PRC (2016), separable interactions)

Looking forward to SIDDHARTA2 and J-PARC E57
... important new constraints on isospin I = $1 \bar{K} N$ interaction

The
 End

special thanks to

Wataru Horiuchi Tsubasa Hoshino Tetsuo Hyodo Kenta Miyahara Shota Ohnishi

