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Mn = 939.565 MeV, MK� = 493.677 MeV, and M
¯K0 =

497.648 MeV for proton, neutron and antikaons, respec-
tively [49]. �m denotes the mass di↵erence of the K�p
and K̄0n channels. The kaonic hydrogen wave function is
expressed as a superposition of a large number of square-
integrable Gaussian basis functions reaching out to far
distances. In the Coulomb-bound state the K�p channel
is closed and the K̄0n channel with its higher physical
mass is closed as well, and so the relevant matrix ele-
ments are accurately determined.

The results for the K�-hydrogen shift and width are
listed in Table I. As shown in the first line of this table,
the self-consistent solution of the Schrödinger equation
using physical masses reproduces the experimental SID-
DHARTA result [31, 32] within its uncertainties. The
Kyoto K̄N potential in the particle basis thus proves
to be a valid input even though the original construc-
tion of the potential was not optimized for this purpose.
On the other hand, when calculating kaonic hydrogen
with isospin-averaged masses of the antikaon and nu-
cleon doublets, we obtain the result shown in the second
(“Isospin”) row of Table I. One observes a quantitative
change of the energy shift by more than 100 eV, exceed-
ing by far the uncertainty of the measurement [31, 32].
While it is common practice in strong-interaction calcula-
tions to assume that isospin breaking e↵ects are not very
significant, these e↵ects can be kinematically enhanced in
near-threshold observables. To elucidate the di↵erence,
we show in Table II the K̄N scattering lengths calculated
with physical masses and with isospin-averaged masses.
The isospin averaging implies an upward shift of theK�p
threshold by 2.6 MeV from its physical location. As a
consequence the real part of the K�p scattering length
aK�p is reduced in magnitude by 0.26 fm (i.e. by about
40 %). The more detailed discussion of the resulting
kaonic hydrogen energy shift and width follows in Sec-
tion IVC featuring the improved Deser formula. Hence
it is obvious that precise physical masses must be used
in the level shift computation.

Next we examine the e↵ect of the energy dependence
of the Kyoto K̄N potential. This energy dependence
is essential in determining the binding energies (several
tens of MeV) of K̄-nuclear systems with few to several
nucleons [19]. However, the atomic states are located in
the near neighborhood of the threshold. Their binding
energies are as small as a few keV. To study the e↵ect
of the energy dependence, we perform the same calcu-
lation as previously described, but setting E

¯KN = 0 in
the potential. As shown in the third row of Table I, the
self-consistent and fixed E

¯KN = 0 results turn out to be
numerically identical. Therefore, in the level shift calcu-
lation of the atomic states, the energy dependence of the
K̄N potential can be safely neglected, and this is how we
shall proceed hereafter, setting E

¯KN = 0 throughout.

TABLE I. Level shifts and decay widths of the 1S atomic
state of the kaonic hydrogen with physical masses and with
isospin averaged masses. Results by setting EK̄N = 0 in the
K̄N interaction are also shown.

Mass E-dep. �E (eV) � (eV)
Physical Self consistent 283 607
Isospin Self consistent 163 574
Physical EK̄N = 0 283 607

Expt. [31, 32] 283 ± 36 ± 6 541 ± 89 ±22

TABLE II. K̄N scattering lengths with physical masses and
with isospin averaged masses.

Mass aK�p (fm) aK�p-K̄0n (fm) aK̄0n (fm) aK�n (fm)
Physical �0.66 + i0.89 �0.85 + i0.26 �0.40 + i1.03 0.58 + i0.78
Isospin �0.40 + i0.81 �0.99 + i0.04 �0.40 + i0.81 0.58 + i0.77

III. THREE-BODY APPROACH TO KAONIC
DEUTERIUM

A. Three-body Hamiltonian

We start from the following three-body Hamiltonian
for kaonic deuterium:

Ĥ =
3X

i=1

T̂i � T̂
cm

+ V̂ NN
23

+
3X

i=2

(V̂
¯KN

1i + V̂ EM
1i ), (3)

where T̂i denotes the kinetic energy of the i-th particle
(i = 1 for an antikaon, and i = 2, 3 for two nucleons), in-
cluding physical masses of p, n, K�, and K̄0. The center-
of-mass kinetic energy, T̂

cm

, is properly subtracted.
We use the Minnesota potential [52] as the NN in-

teraction, V̂ NN . This potential is technically convenient
for three-body computations. It operates with a central
force only but reproduces quantitatively the binding en-
ergy and radius of the deuteron. In fact what matters pri-
marily in the kaonic deuterium calculation is a deuteron
density distribution, ⇢d(r). We checked that r2⇢d(r) de-
duced from the Minnesota potential agrees perfectly and
quantitatively with the radial density profile generated
by realistic NN interactions such as the CD-Bonn po-
tential [53].

For the antikaon-nucleon interaction, V̂
¯KN (E), we em-

ploy the Kyoto K̄N potential [39]. As just pointed out,
the choice of the two-body antikaon-nucleon energy at
threshold, E ⌘ E

¯KN = 0, is justified for kaonic hydrogen.
For kaonic deuterium this issue requires further discus-
sion. The energy of the K̄N two-body subsystem within
the K�d three-body system is not a well-defined con-
cept. Di↵erent prescriptions [13, 14, 17, 19] are available
to take into account the motion of the bound nucleons
while they interact with the antikaon. In the present
work we use the prescription of Refs. [13, 14, 19] where
E

¯KN is proportional to the kaon binding energy. This
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3-body coupled-channels Schrödinger equation 

4

amounts to setting E
¯KN = 0 in the two-body poten-

tial V̂
¯KN also for kaonic deuterium, the choice we take

as our default input in the following three-body calcu-
lations. Leading corrections to this minimal choice are
discussed in Appendix A and numerically estimated us-
ing the resummed Deser formula in Section IVC.

The electromagnetic (Coulomb) interaction is denoted
by V̂ EM . The e↵ect of higher order QED corrections
will be discussed in Sec. IVC. The explicit three-body
coupled-channels equation is written as

✓
ĤK�pn V̂

¯KN
12

+ V̂
¯KN

13

V̂
¯KN

12

+ V̂
¯KN

13

Ĥ
¯K0nn

◆✓
|K�pni��K̄0nn

↵
◆

= E

✓
|K�pni��K̄0nn

↵
◆

(4)

with

ĤK�pn =
3X

i=1

T̂i � T̂
cm

+ V̂ NN
23

+
3X

i=2

(V̂
¯KN

1i + V̂ EM

1i ),

(5)

Ĥ
¯K0nn =

3X

i=1

T̂i � T̂
cm

+ V̂ NN
23

+
3X

i=2

V̂
¯KN

1i +�M (6)

with �M denoting the mass di↵erence of the K�pn and
K̄0nn channels. In the following subsection we describe
how the coupled-channels three-body equation is solved
in practice.

B. Basis functions

The three-body Schrödinger equation is solved using
a variational method with basis expansion. The generic
basis function is expressed as

� = A[ (space) ⌦  (spin) ⌦  (isospin)], (7)

where A is the antisymmetrizer for two nucleons.
Since the Hamiltonian considered in this paper does

not change the total orbital angular momentum, L, and
the total spin, S, of the particles, we can introduce an
L = 0 and S = 1 state with isospin-3-component MT =
� 1

2

as a basis to describe kaonic deuterium. The spin
wave function S = 1 is given explicitly as

 (spin) =
1p
2

�
| "#i+ | #"i

�
, (8)

where the first (second) arrow indicates the spin of the
nucleon with index i = 2 (i = 3). The isospin part,
 (isospin), of the wave function written in the particle
basis includes the following two channels:

|K�pni = | #"#i, |K̄0nni = | "##i. (9)

For the radial part of the wave function we use cor-
related Gaussian (CG) basis functions [54, 55]. This

method is su�ciently flexible so that it enables us to de-
scribe both short- and long-range behaviors of the wave
function accurately, a necessary condition when dealing
with systems such as kaonic deuterium in which the very
di↵erent distance scales characteristic of Coulomb and
strong interactions must be treated simultaneously. (See
recent reviews [56, 57] for many applications of the CG
method.)
Let x denote a two-dimensional column vector whose

i-th element is a usual 3-dimensional coordinate vector,
xi. The spatial part of the wave function in Eq. (7) is
written in the form [58]

FLML(u, v, A,x) = exp(�1

2
x̃Ax) [YL1(ũx)YL2(ṽx)]LML

,

(10)
with solid spherical harmonics

Ylm(r) = rlYlm(r̂). (11)

In Eq. (10), A is a 2 ⇥ 2 positive-definite symmet-
ric matrix, and a tilde stands for the transposed ma-
trix. The product x̃Ax is a short-hand notation for
A

11

x2

1

+ A
22

x2

2

+ 2A
12

x

1

· x
2

. The o↵-diagonal element,
A

12

, induces correlations between the coordinates x
1

and
x

2

. The global vector (GV), ũx = u
1

x

1

+u
2

x

2

describes
rotational motion of the system, with u and v being two-
dimensional column vectors which specify the rotation
axes.
One of the advantages of the combined CG+GV

method is that its functional form does not change un-
der linear coordinate transformations. Suppose that the
matrix A and the vectors u and v are defined in the x

coordinate set. Defining a transformation matrix T as
y = Tx, we can work equivalently with the y coordinate
set, simply replacing A, u and v by T̃AT , T̃ u and T̃ v,
respectively.
Consider two sets of Jacobi coordinates:

x

1

= r

2

� r

3

,

x

2

=
m

2

m
2

+m
3

r

2

+
m

3

m
2

+m
3

r

3

� r

1

, (12)

and

y

1

= r

1

� r

2

,

y

2

=
m

1

m
1

+m
2

r

1

+
m

2

m
1

+m
2

r

2

� r

3

, (13)

where ri stands for the single-particle coordinate of the i-
th particle. Both of these sets are equally suitable for the
three-body calculation. However, when dealing with the
channel coupling between systems of di↵erent mass, the
coordinates x

2

and y

2

are not common to the K�pn and
K̄0nn channels. We therefore use the following integral
coordinates which do not depend on any particle masses:

z

1

= r

1

� r

2

,

z

2

= r

2

� r

3

, (14)

for evaluating the o↵-diagonal matrix element between
the K�pn and K̄0nn channels.
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related Gaussian (CG) basis functions [54, 55]. This

method is su�ciently flexible so that it enables us to de-
scribe both short- and long-range behaviors of the wave
function accurately, a necessary condition when dealing
with systems such as kaonic deuterium in which the very
di↵erent distance scales characteristic of Coulomb and
strong interactions must be treated simultaneously. (See
recent reviews [56, 57] for many applications of the CG
method.)
Let x denote a two-dimensional column vector whose

i-th element is a usual 3-dimensional coordinate vector,
xi. The spatial part of the wave function in Eq. (7) is
written in the form [58]

FLML(u, v, A,x) = exp(�1

2
x̃Ax) [YL1(ũx)YL2(ṽx)]LML

,

(10)
with solid spherical harmonics

Ylm(r) = rlYlm(r̂). (11)

In Eq. (10), A is a 2 ⇥ 2 positive-definite symmet-
ric matrix, and a tilde stands for the transposed ma-
trix. The product x̃Ax is a short-hand notation for
A

11

x2

1

+ A
22

x2

2

+ 2A
12

x

1

· x
2

. The o↵-diagonal element,
A

12

, induces correlations between the coordinates x
1

and
x

2

. The global vector (GV), ũx = u
1

x

1

+u
2

x

2

describes
rotational motion of the system, with u and v being two-
dimensional column vectors which specify the rotation
axes.
One of the advantages of the combined CG+GV

method is that its functional form does not change un-
der linear coordinate transformations. Suppose that the
matrix A and the vectors u and v are defined in the x

coordinate set. Defining a transformation matrix T as
y = Tx, we can work equivalently with the y coordinate
set, simply replacing A, u and v by T̃AT , T̃ u and T̃ v,
respectively.
Consider two sets of Jacobi coordinates:

x

1

= r

2

� r

3

,

x

2

=
m

2

m
2

+m
3

r

2

+
m

3

m
2

+m
3

r

3

� r

1

, (12)

and

y

1

= r

1

� r

2

,

y

2

=
m

1

m
1

+m
2

r

1

+
m

2

m
1

+m
2

r

2

� r

3

, (13)

where ri stands for the single-particle coordinate of the i-
th particle. Both of these sets are equally suitable for the
three-body calculation. However, when dealing with the
channel coupling between systems of di↵erent mass, the
coordinates x

2

and y

2

are not common to the K�pn and
K̄0nn channels. We therefore use the following integral
coordinates which do not depend on any particle masses:

z

1

= r

1

� r

2

,

z

2

= r

2

� r

3

, (14)

for evaluating the o↵-diagonal matrix element between
the K�pn and K̄0nn channels.

nucleon-nucleon 
interaction

antikaon-nucleon 
interaction
K�p $ K̄0n

K�n Coulomb 
interaction

K�p

Input:  
physical masses of 
antikaons and nucleons

mass 
difference

K�pn
vs. 

K̄0nn
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Figure 4: Strong energy shift ∆E and width Γ of kaonic hydrogen for the three approaches.
The shaded areas represent different upper limits of the overall χ2/d.o.f. The 1σ confidence
region is bordered by the dashed line. See text for further details.
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NEWS  from  SIDDHARTA

New kaonic hydrogen precision data (Frascati 2010)
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PRELIMINARY

strong interaction shift and width: 

note:  
remarkable agreement with 
Tomozawa-Weinberg 
(leading order) prediction 
from chiral SU(3) dynamics 

fine-tuning in progress 

B. Borasoy, R. Nissler,  W. W. 
 Eur. Phys. J.  A25 (2005) 79

R. Nissler    
PhD thesis (2008)

T. Hyodo, Y. Ikeda,  W. W.  (2010)

∆E = 305 ± 31 eV

Γ = 512 ± 77 eV

(preliminary)

/ KpX

CONSTRAINTS  from  KAONIC HYDROGEN

SIDDHARTA 

  M. Bazzi et al.  (SIDDHARTA collaboration)   
  Phys. Lett. B 704 (2011) 113 
  Nucl. Phys.  A 881 (2012) 88

Strong interaction  
1s energy shift and width

∆E = 283 ± 36 (stat)±6 (syst) eV

Γ = 541 ± 89 (stat)±22 (syst) eV

Hydrogen
spectrum
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K� K� higher

Background estimation
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Leading order (Weinberg-Tomozawa)
Chiral SU(3) Dynamics

  B. Borasoy, R. Nissler,  W.W. 
Phys. Rev. Lett. 94 (2005) 213401

 R. Nissler
  Thesis 2008

SIDDHARTA
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Framework: 
Non-perturbative Coupled Channels approach based on

Chiral SU(3) Effective Field Theory
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fK̄N(I = 0) + fK̄N(I = 1)
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SIDDHARTA - constrained
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FIG. 7. (Color online) Strength of SIDDHARTA potential
(I = 0) U(r, E) at r = 0. The real part is shown by the solid
line, and the imaginary part is shown by the dotted line.

Alternatively, the wave function of the non-Hermitian
problem can be normalized with the Gamow vector la-
beled by the index G [69, 70],

Z
dr  G(r)

2 = 1. (16)

In the present problem, the poles of ⇤(1405) are in the
physical Riemann sheet of the K̄N channel. Because the
corresponding eigenmomentum has the positive imagi-

FIG. 8. (Color online) Strength of SIDDHARTA potential
(I = 1) U(r, E) at r = 0. The real part is shown by the solid
line, and the imaginary part is shown by the dotted line.

nary part, the wave function converges at r ! 1.5 Hence
both the prescriptions (15) and (16) are applicable (see
also Appendix A).
As explained in Appendix B, for a problem with an

energy-dependent potential, we should modify the nor-
malization condition to ensure the conservation of the
norm and the orthogonality relation between two states.

5 In the coupled-channel formulation, the wave function of the ⇡⌃
channel diverges at r ! 1.
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nary part, the wave function converges at r ! 1.5 Hence
both the prescriptions (15) and (16) are applicable (see
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As explained in Appendix B, for a problem with an

energy-dependent potential, we should modify the nor-
malization condition to ensure the conservation of the
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Kyoto          POTENTIAL : testsKN

Test for kaonic hydrogen: Solve two-body eqn. including Coulomb 

3

Mn = 939.565 MeV, MK� = 493.677 MeV, and M
¯K0 =

497.648 MeV for proton, neutron and antikaons, respec-
tively [49]. �m denotes the mass di↵erence of the K�p
and K̄0n channels. The kaonic hydrogen wave function is
expressed as a superposition of a large number of square-
integrable Gaussian basis functions reaching out to far
distances. In the Coulomb-bound state the K�p channel
is closed and the K̄0n channel with its higher physical
mass is closed as well, and so the relevant matrix ele-
ments are accurately determined.

The results for the K�-hydrogen shift and width are
listed in Table I. As shown in the first line of this table,
the self-consistent solution of the Schrödinger equation
using physical masses reproduces the experimental SID-
DHARTA result [31, 32] within its uncertainties. The
Kyoto K̄N potential in the particle basis thus proves
to be a valid input even though the original construc-
tion of the potential was not optimized for this purpose.
On the other hand, when calculating kaonic hydrogen
with isospin-averaged masses of the antikaon and nu-
cleon doublets, we obtain the result shown in the second
(“Isospin”) row of Table I. One observes a quantitative
change of the energy shift by more than 100 eV, exceed-
ing by far the uncertainty of the measurement [31, 32].
While it is common practice in strong-interaction calcula-
tions to assume that isospin breaking e↵ects are not very
significant, these e↵ects can be kinematically enhanced in
near-threshold observables. To elucidate the di↵erence,
we show in Table II the K̄N scattering lengths calculated
with physical masses and with isospin-averaged masses.
The isospin averaging implies an upward shift of theK�p
threshold by 2.6 MeV from its physical location. As a
consequence the real part of the K�p scattering length
aK�p is reduced in magnitude by 0.26 fm (i.e. by about
40 %). The more detailed discussion of the resulting
kaonic hydrogen energy shift and width follows in Sec-
tion IVC featuring the improved Deser formula. Hence
it is obvious that precise physical masses must be used
in the level shift computation.

Next we examine the e↵ect of the energy dependence
of the Kyoto K̄N potential. This energy dependence
is essential in determining the binding energies (several
tens of MeV) of K̄-nuclear systems with few to several
nucleons [19]. However, the atomic states are located in
the near neighborhood of the threshold. Their binding
energies are as small as a few keV. To study the e↵ect
of the energy dependence, we perform the same calcu-
lation as previously described, but setting E

¯KN = 0 in
the potential. As shown in the third row of Table I, the
self-consistent and fixed E

¯KN = 0 results turn out to be
numerically identical. Therefore, in the level shift calcu-
lation of the atomic states, the energy dependence of the
K̄N potential can be safely neglected, and this is how we
shall proceed hereafter, setting E

¯KN = 0 throughout.

TABLE I. Level shifts and decay widths of the 1S atomic
state of the kaonic hydrogen with physical masses and with
isospin averaged masses. Results by setting EK̄N = 0 in the
K̄N interaction are also shown.

Mass E-dep. �E (eV) � (eV)
Physical Self consistent 283 607
Isospin Self consistent 163 574
Physical EK̄N = 0 283 607

Expt. [31, 32] 283 ± 36 ± 6 541 ± 89 ±22

TABLE II. K̄N scattering lengths with physical masses and
with isospin averaged masses.

Mass aK�p (fm) aK�p-K̄0n (fm) aK̄0n (fm) aK�n (fm)
Physical �0.66 + i0.89 �0.85 + i0.26 �0.40 + i1.03 0.58 + i0.78
Isospin �0.40 + i0.81 �0.99 + i0.04 �0.40 + i0.81 0.58 + i0.77

III. THREE-BODY APPROACH TO KAONIC
DEUTERIUM

A. Three-body Hamiltonian

We start from the following three-body Hamiltonian
for kaonic deuterium:

Ĥ =
3X

i=1

T̂i � T̂
cm

+ V̂ NN
23

+
3X

i=2

(V̂
¯KN

1i + V̂ EM
1i ), (3)

where T̂i denotes the kinetic energy of the i-th particle
(i = 1 for an antikaon, and i = 2, 3 for two nucleons), in-
cluding physical masses of p, n, K�, and K̄0. The center-
of-mass kinetic energy, T̂

cm

, is properly subtracted.
We use the Minnesota potential [52] as the NN in-

teraction, V̂ NN . This potential is technically convenient
for three-body computations. It operates with a central
force only but reproduces quantitatively the binding en-
ergy and radius of the deuteron. In fact what matters pri-
marily in the kaonic deuterium calculation is a deuteron
density distribution, ⇢d(r). We checked that r2⇢d(r) de-
duced from the Minnesota potential agrees perfectly and
quantitatively with the radial density profile generated
by realistic NN interactions such as the CD-Bonn po-
tential [53].

For the antikaon-nucleon interaction, V̂
¯KN (E), we em-

ploy the Kyoto K̄N potential [39]. As just pointed out,
the choice of the two-body antikaon-nucleon energy at
threshold, E ⌘ E

¯KN = 0, is justified for kaonic hydrogen.
For kaonic deuterium this issue requires further discus-
sion. The energy of the K̄N two-body subsystem within
the K�d three-body system is not a well-defined con-
cept. Di↵erent prescriptions [13, 14, 17, 19] are available
to take into account the motion of the bound nucleons
while they interact with the antikaon. In the present
work we use the prescription of Refs. [13, 14, 19] where
E

¯KN is proportional to the kaon binding energy. This

(SIDDHARTA)

using 
physical 
masses

using 
isospin-
averaged
masses

Isospin breaking effects important close to threshold(s) 

Calculated         scattering lengths  
using physical and isospin-averaged masses for 

KN

3

Mn = 939.565 MeV, MK� = 493.677 MeV, and M
¯K0 =

497.648 MeV for proton, neutron and antikaons, respec-
tively [49]. �m denotes the mass di↵erence of the K�p
and K̄0n channels. The kaonic hydrogen wave function is
expressed as a superposition of a large number of square-
integrable Gaussian basis functions reaching out to far
distances. In the Coulomb-bound state the K�p channel
is closed and the K̄0n channel with its higher physical
mass is closed as well, and so the relevant matrix ele-
ments are accurately determined.

The results for the K�-hydrogen shift and width are
listed in Table I. As shown in the first line of this table,
the self-consistent solution of the Schrödinger equation
using physical masses reproduces the experimental SID-
DHARTA result [31, 32] within its uncertainties. The
Kyoto K̄N potential in the particle basis thus proves
to be a valid input even though the original construc-
tion of the potential was not optimized for this purpose.
On the other hand, when calculating kaonic hydrogen
with isospin-averaged masses of the antikaon and nu-
cleon doublets, we obtain the result shown in the second
(“Isospin”) row of Table I. One observes a quantitative
change of the energy shift by more than 100 eV, exceed-
ing by far the uncertainty of the measurement [31, 32].
While it is common practice in strong-interaction calcula-
tions to assume that isospin breaking e↵ects are not very
significant, these e↵ects can be kinematically enhanced in
near-threshold observables. To elucidate the di↵erence,
we show in Table II the K̄N scattering lengths calculated
with physical masses and with isospin-averaged masses.
The isospin averaging implies an upward shift of theK�p
threshold by 2.6 MeV from its physical location. As a
consequence the real part of the K�p scattering length
aK�p is reduced in magnitude by 0.26 fm (i.e. by about
40 %). The more detailed discussion of the resulting
kaonic hydrogen energy shift and width follows in Sec-
tion IVC featuring the improved Deser formula. Hence
it is obvious that precise physical masses must be used
in the level shift computation.

Next we examine the e↵ect of the energy dependence
of the Kyoto K̄N potential. This energy dependence
is essential in determining the binding energies (several
tens of MeV) of K̄-nuclear systems with few to several
nucleons [19]. However, the atomic states are located in
the near neighborhood of the threshold. Their binding
energies are as small as a few keV. To study the e↵ect
of the energy dependence, we perform the same calcu-
lation as previously described, but setting E

¯KN = 0 in
the potential. As shown in the third row of Table I, the
self-consistent and fixed E

¯KN = 0 results turn out to be
numerically identical. Therefore, in the level shift calcu-
lation of the atomic states, the energy dependence of the
K̄N potential can be safely neglected, and this is how we
shall proceed hereafter, setting E

¯KN = 0 throughout.

TABLE I. Level shifts and decay widths of the 1S atomic
state of the kaonic hydrogen with physical masses and with
isospin averaged masses. Results by setting EK̄N = 0 in the
K̄N interaction are also shown.

Mass E-dep. �E (eV) � (eV)
Physical Self consistent 283 607
Isospin Self consistent 163 574
Physical EK̄N = 0 283 607

Expt. [31, 32] 283 ± 36 ± 6 541 ± 89 ±22

TABLE II. K̄N scattering lengths with physical masses and
with isospin averaged masses.

Mass aK�p (fm) aK�p-K̄0n (fm) aK̄0n (fm) aK�n (fm)
Physical �0.66 + i0.89 �0.85 + i0.26 �0.40 + i1.03 0.58 + i0.78
Isospin �0.40 + i0.81 �0.99 + i0.04 �0.40 + i0.81 0.58 + i0.77

III. THREE-BODY APPROACH TO KAONIC
DEUTERIUM

A. Three-body Hamiltonian

We start from the following three-body Hamiltonian
for kaonic deuterium:

Ĥ =
3X

i=1

T̂i � T̂
cm

+ V̂ NN
23

+
3X

i=2

(V̂
¯KN

1i + V̂ EM
1i ), (3)

where T̂i denotes the kinetic energy of the i-th particle
(i = 1 for an antikaon, and i = 2, 3 for two nucleons), in-
cluding physical masses of p, n, K�, and K̄0. The center-
of-mass kinetic energy, T̂

cm

, is properly subtracted.
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density distribution, ⇢d(r). We checked that r2⇢d(r) de-
duced from the Minnesota potential agrees perfectly and
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tential [53].
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¯KN = 0, is justified for kaonic hydrogen.
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cept. Di↵erent prescriptions [13, 14, 17, 19] are available
to take into account the motion of the bound nucleons
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E

¯KN is proportional to the kaon binding energy. This

(K�, K̄0) and (p, n)
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C. Energy convergence

In this work short-range strong interactions as well as
the long-range Coulomb interaction have to be treated si-
multaneously with high precision. To extract the detailed
e↵ects of the K̄N interaction from the spectrum of kaonic
deuterium, we need to calculate the binding energy with
an accuracy of a few eV. This is a computational chal-
lenge that demands great care. In this subsection, we
discuss how to meet this challenge of calculating wave
functions with the required precision.

The wave function is expanded in a large set of basis
functions, Eq. (7), and the generalized eigenvalue prob-
lem

KX

j=1

(Hij � EBij)Cj = 0, (15)

is solved to determine the coe�cients Ci and eigenenergy
E, with the Hamiltonian matrix Hij = h�i|H|�ji and
the overlap matrix Bij = h�i|�ji. Here K is the number
of basis functions. To achieve energy convergence for the
kaonic atom, it turns out that we need to include basis
functions reaching over distance scales from one tenth
to several hundreds of fm. Given the large number of
non-orthogonal basis functions, we cannot solve the gen-
eralized eigenvalue problem due to round-o↵ errors in the
double precision computation [59]. To avoid this prob-
lem, we reconstruct a new orthonormal basis set from
the prepared basis functions by diagonalizing the overlap
matrix Bij :

�µ =
1
p
µ

KX

i=1

c
(µ)
i �i. (16)

The number of new basis functions {�µ} is again K, and
each function is labeled by its eigenvalue µ. The Hamilto-
nian is then diagonalized with this set of basis functions,
omitting those which give very small µ. If a whole set of
basis functions emerges with very small µ, we discard this
set altogether and try another one. In practice a cuto↵
parameter is introduced, defined by the ratio of mini-
mum to maximum eigenvalues µ as �

cut

= µ
max

/µ
min

.
Basis functions with µ < µ

min

are discarded. The cuto↵
parameter is taken as large as possible within significant
digits of the double precision computation.

To generate the elements of the matrix A (the varia-
tional parameters), we use a geometric progression [60]
for diagonal matrix elements of A with the x coordinates
defined in Eq. (12). For the global vectors, we simply take
ũ = (1, 0) and ṽ = (0, 1) to define an angular momentum
for each coordinate. Intermediate angular momenta up
to L

1

+ L
2

 4 are taken into account.
For the diagonal elements of the matrices A, u, and

v, the variational procedures can actually be optimized
by suitably combining a representation using the coor-
dinates x of Eq. (12) with the equivalent representation

TABLE III. Cuto↵ parameter �cut, number of basis functions
N , and the real part of the energy of the 1S state of kaonic
deuterium.

log10 �cut N Re[E] (MeV)
16 1677 �2.211689436
17 2194 �2.211722964
18 2377 �2.211732072
19 2511 �2.211735493
20 2621 �2.211737242
21 2721 �2.211737609
22 2806 �2.211737677
23 2879 �2.211737682

in the so-called rearrangement channel, using the coor-
dinates y of Eq. (13). The evaluation of the Hamilto-
nian matrix elements is then performed in x coordinates
applying the transformations A ! T̃AT , u ! T̃ u and
v ! T̃ v where appropriate.
With one-by-one inclusion of those channels just men-

tioned, several sets of variational parameters are pre-
pared covering distance scales from 0.1 fm to 300-1000
fm, in search for the lowest energy. We need more than
30 Gaussian basis functions for each coordinate to achieve
energy convergence within a few eV. After a careful ex-
amination of the energy convergence by introducing the
cuto↵ parameter �

cut

, the total number of basis functions
K is 4096 and 8192 for the S and P states, respectively.
Table III shows the cuto↵ dependence of the real part

of the energy of the kaonic deuterium 1S state mea-
sured from the three-body break-up threshold. N de-
notes the number of basis functions that actually appear
in the diagonalization. The number of primary basis
functions, K = 4096, is reduced with decreasing �

cut

.
It turns out that we cannot diagonalize the Hamiltonian
for �

cut

& 1023 due to round-o↵ errors in the double pre-
cision calculations. Finally we reach convergence within
eV accuracy for �

cut

& 1020, in which case the number of
basis functions becomes approximately half of the num-
ber of primary basis functions. For the 2P state, we take
�
cut

& 1028, and N & 3508 basis functions are actually
needed in the diagonalization.

IV. RESULTS AND DISCUSSION

A. Spectrum and level shifts

Table IV lists binding energies, measured from the
K�d threshold, and decay widths of kaonic deuterium.
The three-body calculation with Coulomb interaction
only is shifted slightly from the energy levels produced in
the K�d two-body calculations with point charge, by 8
eV and 1 eV for the 1S and 2S states, respectively. The
2P energy remains unchanged in the three-body calcu-
lation because the P -wave function around the origin is
suppressed by the centrifugal barrier. This behavior is
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Table IV lists binding energies, measured from the
K�d threshold, and decay widths of kaonic deuterium.
The three-body calculation with Coulomb interaction
only is shifted slightly from the energy levels produced in
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2P energy remains unchanged in the three-body calcu-
lation because the P -wave function around the origin is
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TABLE IV. Energy spectrum of kaonic deuterium. Three- and two- body calculations with Coulomb interaction only (omitting
the strong K̄N interaction) are listed in the first three rows. Energy levels resulting from the three-body calculation are
measured relative to the calculated K�d threshold. For the K�d two-body calculations the deuteron mass Md = 1875.613MeV
has been used [49].

E1S(keV) E2P (keV) E2S(keV)
Coulomb �10.398 �2.602 �2.600

Uniform charge (2-body) �10.401 �2.602 �2.601
Point charge (2-body) �10.406 �2.602 �2.602

Coulomb+K̄N �9.736�i 0.508 �2.602�i 0.000 �2.517�i 0.067

consistent with the K�d two-body estimate of the energy
shift assuming a uniform charge distribution as listed in
the table.

With inclusion of the K̄N interaction the 1S state
is shifted by ⇠ 670 eV from the K�d Coulomb (point
charge) 1S level. The level shift and width of the 2S
level are an order of magnitude smaller than those of the
1S state because the 2S wave function has a smaller am-
plitude around the origin than the one of the 1S state.
The 2P energy remains unchanged and its decay width
is found to be less than 1 eV; the K̄N interaction has
virtually no e↵ect on the 2P state of kaonic deuterium
because of the presence of the centrifugal barrier. We
can therefore safely extract the 1S level shift from the
2P ! 1S transition energy. In summary, the 1S level
shift and decay width resulting from the full three-body
calculation are predicted as:

�E � i
�

2
= (670� i 508) eV, (17)

namely, (�E,�) = (670, 1016) eV using the Kyoto K̄N
potential. These values are roughly consistent with those
found in a recent Faddeev calculation [48], although the
basic interactions used in that approach are di↵erent
from ours.

For comparison, a full three-body computation of the
level shift and width has also been performed using
isospin-averaged meson and baryon masses, with the re-
sult �E � i�/2 = (672� i 509) eV. The small deviation,
by just a few eV, from the corresponding calculation us-
ing physical masses is of some interest here, as this is
in unexpected contrast to the relatively large isospin-
breaking e↵ects seen in kaonic hydrogen. Some insight
into the origin of this di↵erence can be gained by a closer
look into the multiple scattering series and the improved
Deser formula which relates the level shift and width to
the pertinent scattering lengths, see subsection IVC.

Up to this point the determination of the width �
incorporates the decay channels K̄N ! ⇡Y , where Y
stands for ⇤ and ⌃ hyperons. The question arises about
possible additional contributions to the width from an-
tikaon absorption on two nucleons, with the coupled
K�pn and K̄0nn channels decaying into ⇤n+⌃0n+⌃�p.
Early measurements at Brookhaven with K� stopped on
liquid deuterium in the BNL bubble chamber [50] demon-
strated that these processes are strongly suppressed as

compared to the leading single-nucleon channels, K̄N !
⇡Y . The ratio of two-nucleon absorption reactions to
the single-nucleon processes was found to be as small
as (1.2 ± 0.1)% [50]. Taking this value for orientation,
the kaonic deuterium 1S width would increase through
two-nucleon absorption by only about 10 eV, a correc-
tion that can be safely neglected within an uncertainty
range of approximately 10% assigned to the calculated
width of about a keV. The smallness of the two-body
absorptive width can be understood as follows. Kine-
matical conditions for the K̄NN ! Y N process require
a large momentum transfer of order 1 GeV/c to be pro-
vided by the initial deuteron wave function at short dis-
tances. The probability for this to take place in a weakly
bound, dilute system like the deuteron is small. Simi-
lar considerations hold, for example, in the analysis of
the 3He(K�,⇤p)n reaction [30]. Background simula-
tions performed for this experiment pointed out that two-
nucleon absorption is strongly suppressed in the vicinity
of the K�pp threshold, whereas three-nucleon reactions
dominate.

B. Constraining the I = 1 component of K̄N
interaction

To quantify the sensitivity of the kaonic deuterium
level shift with respect to the I = 1 component of the
K̄N interaction, we vary its strength within the uncer-
tainties of the SIDDHARTA kaonic hydrogen measure-
ment [31, 32]. This uncertainty range can be simulated
by simply multiplying a constant, �, to the real part of
the I = 1 component of the K̄Npotential. Within the
SIDDHARTA constraint [31, 32], the control parameter
� can range from �0.17 to 1.08. Evidently this constraint
is quite weak: even � = 0, i.e. a vanishing real part of
the I = 1 K̄N potential, would still be acceptable. The-
oretical considerations based on chiral SU(3) dynamics
would exclude such a possibility, but it cannot be ruled
out by just looking at the SIDDHARTA data.
Table V lists the results of the two- and three-body cal-

culations performed with limiting values of � compared
to the standard case, � = 1. It is interesting to observe
that the sensitivity with respect to the I = 1 K̄N in-
teraction strength shows di↵erent patterns for �E and
� in kaonic hydrogen as compared to kaonic deuterium.
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charge) 1S level. The level shift and width of the 2S
level are an order of magnitude smaller than those of the
1S state because the 2S wave function has a smaller am-
plitude around the origin than the one of the 1S state.
The 2P energy remains unchanged and its decay width
is found to be less than 1 eV; the K̄N interaction has
virtually no e↵ect on the 2P state of kaonic deuterium
because of the presence of the centrifugal barrier. We
can therefore safely extract the 1S level shift from the
2P ! 1S transition energy. In summary, the 1S level
shift and decay width resulting from the full three-body
calculation are predicted as:
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�
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= (670� i 508) eV, (17)

namely, (�E,�) = (670, 1016) eV using the Kyoto K̄N
potential. These values are roughly consistent with those
found in a recent Faddeev calculation [48], although the
basic interactions used in that approach are di↵erent
from ours.

For comparison, a full three-body computation of the
level shift and width has also been performed using
isospin-averaged meson and baryon masses, with the re-
sult �E � i�/2 = (672� i 509) eV. The small deviation,
by just a few eV, from the corresponding calculation us-
ing physical masses is of some interest here, as this is
in unexpected contrast to the relatively large isospin-
breaking e↵ects seen in kaonic hydrogen. Some insight
into the origin of this di↵erence can be gained by a closer
look into the multiple scattering series and the improved
Deser formula which relates the level shift and width to
the pertinent scattering lengths, see subsection IVC.

Up to this point the determination of the width �
incorporates the decay channels K̄N ! ⇡Y , where Y
stands for ⇤ and ⌃ hyperons. The question arises about
possible additional contributions to the width from an-
tikaon absorption on two nucleons, with the coupled
K�pn and K̄0nn channels decaying into ⇤n+⌃0n+⌃�p.
Early measurements at Brookhaven with K� stopped on
liquid deuterium in the BNL bubble chamber [50] demon-
strated that these processes are strongly suppressed as

compared to the leading single-nucleon channels, K̄N !
⇡Y . The ratio of two-nucleon absorption reactions to
the single-nucleon processes was found to be as small
as (1.2 ± 0.1)% [50]. Taking this value for orientation,
the kaonic deuterium 1S width would increase through
two-nucleon absorption by only about 10 eV, a correc-
tion that can be safely neglected within an uncertainty
range of approximately 10% assigned to the calculated
width of about a keV. The smallness of the two-body
absorptive width can be understood as follows. Kine-
matical conditions for the K̄NN ! Y N process require
a large momentum transfer of order 1 GeV/c to be pro-
vided by the initial deuteron wave function at short dis-
tances. The probability for this to take place in a weakly
bound, dilute system like the deuteron is small. Simi-
lar considerations hold, for example, in the analysis of
the 3He(K�,⇤p)n reaction [30]. Background simula-
tions performed for this experiment pointed out that two-
nucleon absorption is strongly suppressed in the vicinity
of the K�pp threshold, whereas three-nucleon reactions
dominate.

B. Constraining the I = 1 component of K̄N
interaction

To quantify the sensitivity of the kaonic deuterium
level shift with respect to the I = 1 component of the
K̄N interaction, we vary its strength within the uncer-
tainties of the SIDDHARTA kaonic hydrogen measure-
ment [31, 32]. This uncertainty range can be simulated
by simply multiplying a constant, �, to the real part of
the I = 1 component of the K̄Npotential. Within the
SIDDHARTA constraint [31, 32], the control parameter
� can range from �0.17 to 1.08. Evidently this constraint
is quite weak: even � = 0, i.e. a vanishing real part of
the I = 1 K̄N potential, would still be acceptable. The-
oretical considerations based on chiral SU(3) dynamics
would exclude such a possibility, but it cannot be ruled
out by just looking at the SIDDHARTA data.
Table V lists the results of the two- and three-body cal-

culations performed with limiting values of � compared
to the standard case, � = 1. It is interesting to observe
that the sensitivity with respect to the I = 1 K̄N in-
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The 2P energy remains unchanged and its decay width
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level shift and width has also been performed using
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breaking e↵ects seen in kaonic hydrogen. Some insight
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With inclusion of the K̄N interaction the 1S state
is shifted by ⇠ 670 eV from the K�d Coulomb (point
charge) 1S level. The level shift and width of the 2S
level are an order of magnitude smaller than those of the
1S state because the 2S wave function has a smaller am-
plitude around the origin than the one of the 1S state.
The 2P energy remains unchanged and its decay width
is found to be less than 1 eV; the K̄N interaction has
virtually no e↵ect on the 2P state of kaonic deuterium
because of the presence of the centrifugal barrier. We
can therefore safely extract the 1S level shift from the
2P ! 1S transition energy. In summary, the 1S level
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namely, (�E,�) = (670, 1016) eV using the Kyoto K̄N
potential. These values are roughly consistent with those
found in a recent Faddeev calculation [48], although the
basic interactions used in that approach are di↵erent
from ours.

For comparison, a full three-body computation of the
level shift and width has also been performed using
isospin-averaged meson and baryon masses, with the re-
sult �E � i�/2 = (672� i 509) eV. The small deviation,
by just a few eV, from the corresponding calculation us-
ing physical masses is of some interest here, as this is
in unexpected contrast to the relatively large isospin-
breaking e↵ects seen in kaonic hydrogen. Some insight
into the origin of this di↵erence can be gained by a closer
look into the multiple scattering series and the improved
Deser formula which relates the level shift and width to
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Up to this point the determination of the width �
incorporates the decay channels K̄N ! ⇡Y , where Y
stands for ⇤ and ⌃ hyperons. The question arises about
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K�pn and K̄0nn channels decaying into ⇤n+⌃0n+⌃�p.
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the single-nucleon processes was found to be as small
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the kaonic deuterium 1S width would increase through
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tion that can be safely neglected within an uncertainty
range of approximately 10% assigned to the calculated
width of about a keV. The smallness of the two-body
absorptive width can be understood as follows. Kine-
matical conditions for the K̄NN ! Y N process require
a large momentum transfer of order 1 GeV/c to be pro-
vided by the initial deuteron wave function at short dis-
tances. The probability for this to take place in a weakly
bound, dilute system like the deuteron is small. Simi-
lar considerations hold, for example, in the analysis of
the 3He(K�,⇤p)n reaction [30]. Background simula-
tions performed for this experiment pointed out that two-
nucleon absorption is strongly suppressed in the vicinity
of the K�pp threshold, whereas three-nucleon reactions
dominate.

B. Constraining the I = 1 component of K̄N
interaction

To quantify the sensitivity of the kaonic deuterium
level shift with respect to the I = 1 component of the
K̄N interaction, we vary its strength within the uncer-
tainties of the SIDDHARTA kaonic hydrogen measure-
ment [31, 32]. This uncertainty range can be simulated
by simply multiplying a constant, �, to the real part of
the I = 1 component of the K̄Npotential. Within the
SIDDHARTA constraint [31, 32], the control parameter
� can range from �0.17 to 1.08. Evidently this constraint
is quite weak: even � = 0, i.e. a vanishing real part of
the I = 1 K̄N potential, would still be acceptable. The-
oretical considerations based on chiral SU(3) dynamics
would exclude such a possibility, but it cannot be ruled
out by just looking at the SIDDHARTA data.
Table V lists the results of the two- and three-body cal-
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consistent with the K�d two-body estimate of the energy
shift assuming a uniform charge distribution as listed in
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With inclusion of the K̄N interaction the 1S state
is shifted by ⇠ 670 eV from the K�d Coulomb (point
charge) 1S level. The level shift and width of the 2S
level are an order of magnitude smaller than those of the
1S state because the 2S wave function has a smaller am-
plitude around the origin than the one of the 1S state.
The 2P energy remains unchanged and its decay width
is found to be less than 1 eV; the K̄N interaction has
virtually no e↵ect on the 2P state of kaonic deuterium
because of the presence of the centrifugal barrier. We
can therefore safely extract the 1S level shift from the
2P ! 1S transition energy. In summary, the 1S level
shift and decay width resulting from the full three-body
calculation are predicted as:

�E � i
�

2
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namely, (�E,�) = (670, 1016) eV using the Kyoto K̄N
potential. These values are roughly consistent with those
found in a recent Faddeev calculation [48], although the
basic interactions used in that approach are di↵erent
from ours.

For comparison, a full three-body computation of the
level shift and width has also been performed using
isospin-averaged meson and baryon masses, with the re-
sult �E � i�/2 = (672� i 509) eV. The small deviation,
by just a few eV, from the corresponding calculation us-
ing physical masses is of some interest here, as this is
in unexpected contrast to the relatively large isospin-
breaking e↵ects seen in kaonic hydrogen. Some insight
into the origin of this di↵erence can be gained by a closer
look into the multiple scattering series and the improved
Deser formula which relates the level shift and width to
the pertinent scattering lengths, see subsection IVC.

Up to this point the determination of the width �
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possible additional contributions to the width from an-
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Early measurements at Brookhaven with K� stopped on
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tions performed for this experiment pointed out that two-
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level shift with respect to the I = 1 component of the
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by simply multiplying a constant, �, to the real part of
the I = 1 component of the K̄Npotential. Within the
SIDDHARTA constraint [31, 32], the control parameter
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Early measurements at Brookhaven with K� stopped on
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strated that these processes are strongly suppressed as
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tion that can be safely neglected within an uncertainty
range of approximately 10% assigned to the calculated
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absorptive width can be understood as follows. Kine-
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the 3He(K�,⇤p)n reaction [30]. Background simula-
tions performed for this experiment pointed out that two-
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of the K�pp threshold, whereas three-nucleon reactions
dominate.
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level shift with respect to the I = 1 component of the
K̄N interaction, we vary its strength within the uncer-
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virtually no e↵ect on the 2P state of kaonic deuterium
because of the presence of the centrifugal barrier. We
can therefore safely extract the 1S level shift from the
2P ! 1S transition energy. In summary, the 1S level
shift and decay width resulting from the full three-body
calculation are predicted as:
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namely, (�E,�) = (670, 1016) eV using the Kyoto K̄N
potential. These values are roughly consistent with those
found in a recent Faddeev calculation [48], although the
basic interactions used in that approach are di↵erent
from ours.
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level shift and width has also been performed using
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in unexpected contrast to the relatively large isospin-
breaking e↵ects seen in kaonic hydrogen. Some insight
into the origin of this di↵erence can be gained by a closer
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Deser formula which relates the level shift and width to
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Up to this point the determination of the width �
incorporates the decay channels K̄N ! ⇡Y , where Y
stands for ⇤ and ⌃ hyperons. The question arises about
possible additional contributions to the width from an-
tikaon absorption on two nucleons, with the coupled
K�pn and K̄0nn channels decaying into ⇤n+⌃0n+⌃�p.
Early measurements at Brookhaven with K� stopped on
liquid deuterium in the BNL bubble chamber [50] demon-
strated that these processes are strongly suppressed as

compared to the leading single-nucleon channels, K̄N !
⇡Y . The ratio of two-nucleon absorption reactions to
the single-nucleon processes was found to be as small
as (1.2 ± 0.1)% [50]. Taking this value for orientation,
the kaonic deuterium 1S width would increase through
two-nucleon absorption by only about 10 eV, a correc-
tion that can be safely neglected within an uncertainty
range of approximately 10% assigned to the calculated
width of about a keV. The smallness of the two-body
absorptive width can be understood as follows. Kine-
matical conditions for the K̄NN ! Y N process require
a large momentum transfer of order 1 GeV/c to be pro-
vided by the initial deuteron wave function at short dis-
tances. The probability for this to take place in a weakly
bound, dilute system like the deuteron is small. Simi-
lar considerations hold, for example, in the analysis of
the 3He(K�,⇤p)n reaction [30]. Background simula-
tions performed for this experiment pointed out that two-
nucleon absorption is strongly suppressed in the vicinity
of the K�pp threshold, whereas three-nucleon reactions
dominate.

B. Constraining the I = 1 component of K̄N
interaction

To quantify the sensitivity of the kaonic deuterium
level shift with respect to the I = 1 component of the
K̄N interaction, we vary its strength within the uncer-
tainties of the SIDDHARTA kaonic hydrogen measure-
ment [31, 32]. This uncertainty range can be simulated
by simply multiplying a constant, �, to the real part of
the I = 1 component of the K̄Npotential. Within the
SIDDHARTA constraint [31, 32], the control parameter
� can range from �0.17 to 1.08. Evidently this constraint
is quite weak: even � = 0, i.e. a vanishing real part of
the I = 1 K̄N potential, would still be acceptable. The-
oretical considerations based on chiral SU(3) dynamics
would exclude such a possibility, but it cannot be ruled
out by just looking at the SIDDHARTA data.
Table V lists the results of the two- and three-body cal-

culations performed with limiting values of � compared
to the standard case, � = 1. It is interesting to observe
that the sensitivity with respect to the I = 1 K̄N in-
teraction strength shows di↵erent patterns for �E and
� in kaonic hydrogen as compared to kaonic deuterium.

6

TABLE IV. Energy spectrum of kaonic deuterium. Three- and two- body calculations with Coulomb interaction only (omitting
the strong K̄N interaction) are listed in the first three rows. Energy levels resulting from the three-body calculation are
measured relative to the calculated K�d threshold. For the K�d two-body calculations the deuteron mass Md = 1875.613MeV
has been used [49].

E1S(keV) E2P (keV) E2S(keV)
Coulomb �10.398 �2.602 �2.600

Uniform charge (2-body) �10.401 �2.602 �2.601
Point charge (2-body) �10.406 �2.602 �2.602

Coulomb+K̄N �9.736�i 0.508 �2.602�i 0.000 �2.517�i 0.067

consistent with the K�d two-body estimate of the energy
shift assuming a uniform charge distribution as listed in
the table.

With inclusion of the K̄N interaction the 1S state
is shifted by ⇠ 670 eV from the K�d Coulomb (point
charge) 1S level. The level shift and width of the 2S
level are an order of magnitude smaller than those of the
1S state because the 2S wave function has a smaller am-
plitude around the origin than the one of the 1S state.
The 2P energy remains unchanged and its decay width
is found to be less than 1 eV; the K̄N interaction has
virtually no e↵ect on the 2P state of kaonic deuterium
because of the presence of the centrifugal barrier. We
can therefore safely extract the 1S level shift from the
2P ! 1S transition energy. In summary, the 1S level
shift and decay width resulting from the full three-body
calculation are predicted as:

�E � i
�

2
= (670� i 508) eV, (17)

namely, (�E,�) = (670, 1016) eV using the Kyoto K̄N
potential. These values are roughly consistent with those
found in a recent Faddeev calculation [48], although the
basic interactions used in that approach are di↵erent
from ours.

For comparison, a full three-body computation of the
level shift and width has also been performed using
isospin-averaged meson and baryon masses, with the re-
sult �E � i�/2 = (672� i 509) eV. The small deviation,
by just a few eV, from the corresponding calculation us-
ing physical masses is of some interest here, as this is
in unexpected contrast to the relatively large isospin-
breaking e↵ects seen in kaonic hydrogen. Some insight
into the origin of this di↵erence can be gained by a closer
look into the multiple scattering series and the improved
Deser formula which relates the level shift and width to
the pertinent scattering lengths, see subsection IVC.

Up to this point the determination of the width �
incorporates the decay channels K̄N ! ⇡Y , where Y
stands for ⇤ and ⌃ hyperons. The question arises about
possible additional contributions to the width from an-
tikaon absorption on two nucleons, with the coupled
K�pn and K̄0nn channels decaying into ⇤n+⌃0n+⌃�p.
Early measurements at Brookhaven with K� stopped on
liquid deuterium in the BNL bubble chamber [50] demon-
strated that these processes are strongly suppressed as

compared to the leading single-nucleon channels, K̄N !
⇡Y . The ratio of two-nucleon absorption reactions to
the single-nucleon processes was found to be as small
as (1.2 ± 0.1)% [50]. Taking this value for orientation,
the kaonic deuterium 1S width would increase through
two-nucleon absorption by only about 10 eV, a correc-
tion that can be safely neglected within an uncertainty
range of approximately 10% assigned to the calculated
width of about a keV. The smallness of the two-body
absorptive width can be understood as follows. Kine-
matical conditions for the K̄NN ! Y N process require
a large momentum transfer of order 1 GeV/c to be pro-
vided by the initial deuteron wave function at short dis-
tances. The probability for this to take place in a weakly
bound, dilute system like the deuteron is small. Simi-
lar considerations hold, for example, in the analysis of
the 3He(K�,⇤p)n reaction [30]. Background simula-
tions performed for this experiment pointed out that two-
nucleon absorption is strongly suppressed in the vicinity
of the K�pp threshold, whereas three-nucleon reactions
dominate.

B. Constraining the I = 1 component of K̄N
interaction

To quantify the sensitivity of the kaonic deuterium
level shift with respect to the I = 1 component of the
K̄N interaction, we vary its strength within the uncer-
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out by just looking at the SIDDHARTA data.
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     Test of DESER type FORMULAE

Improved Deser-Trueman formula 
relates hadronic atom 1S energy shift and width and hadron-nucleus scattering length 

7

In the K�p system, a variation of � within its upper
and lower limits changes �E by less than 10%, whereas
� changes by more than 30%. On the other hand, the
same variation of � in the K�pn system induces a change
�E by 170 eV while � remains stable around 1 keV.

One concludes that an accuracy of about 25% in a
measurement of the 1S shift in kaonic deuterium would
already improve the determination of the I = 1 K̄N
interaction considerably over the kaonic hydrogen result.
The 30-60 eV precision to be expected in the planned
experiments [36, 37] falls well within that range.

TABLE V. Level shifts and decay widths (in eV) of kaonic
hydrogen and deuterium computed with di↵erent I = 1
strengths of the K̄N interaction. The experimental level
shift data of kaonic hydrogen is (�E,�) = (283 ± 36 ± 6,
541± 89± 22) eV [31, 32].

K�p K�d
� �E � �E �
1.08 287 648 676 1020
1.00 283 607 670 1016
�0.17 310 430 506 980

C. Improved Deser formulae for kaonic deuterium

The improved Deser formula [43, 51], derived from
non-relativistic e↵ective field theory (EFT), is frequently
used in the investigation of strong-interaction e↵ects in
hadronic atoms. The 1S level shift �E and width � of a
kaonic atom can be estimated by the relation [43, 51]:

�E � i�

2
= �2µ2↵3a[1� 2µ↵(ln↵� 1)a], (18)

where µ is the kaon-nucleus reduced mass, ↵ is the fine
structure constant and a is the K�-nucleus scattering
length. The logarithmically enhanced correction term
can be resummed to all orders [61], providing a “double-
improved” Deser formula:

�E � i�

2
= � 2µ2↵3a

1 + 2µ↵(ln↵� 1)a
. (19)

In this section we compare our full three-body calculation
results with the results obtained from Eqs. (18) and (19).
But let us first examine the shift and width of kaonic
hydrogen in this context. The K�p scattering length
obtained by solving the two-body Schrödinger equation
with the Kyoto K̄N potential is shown in Table II. Us-
ing Eqs. (18) and (19) one finds the results shown in
Table VI. It is evident that the improved Deser formula
works reasonably well for kaonic hydrogen, and the re-
summed version indeed improves the accuracy further.

Estimates of the level shift and width of kaonic deu-
terium using the Deser formulae require the K�d scat-
tering length aK�d as input. In the fixed center approx-
imation (FCA) for the nucleons, aK�d derived from a

TABLE VI. Level shift and width of kaonic hydrogen obtained
by solving the Schrödinger equation with the Kyoto K̄N po-
tential, and by using the improved Deser formula and its re-
summed version.

�E (eV) � (eV)
Full Schrödinger equation 283 607
Improved Deser formula (18) 293 596
Resummed formula (19) 284 605

multiple scattering series is given as [43, 62]

aK�d =
µK�d

mK�

Z
d3r ⇢d(r) ãK�d(r), (20)

ãK�d(r) =
ãp + ãn + (2ãpãn � ã2

ex

)/r � 2ã2
ex

ãn/r
2

1� ãpãn/r2 + ã2
ex

ãn/r3
,

(21)

with the K�-deuteron reduced mass µK�d, and ⇢d(r)
is the nucleon density distribution in the deuteron, ob-
tained in the present case using the Minnesota poten-
tial. The scattering lengths are defined as ãp ⌘ ãK�p,
ãn ⌘ ãK�n and ã2

ex

⌘ ã2
K�p- ¯K0n

/(1 + ã
¯K0n/r), and the

scattering lengths ã
¯KN in the laboratory frame are given

as ã
¯KN ⌘ mK

µK̄N
a

¯KN with the K̄N reduced mass µ
¯KN .

Using the Kyoto K̄N potential, the resulting two-body
K̄N scattering lengths are shown in Table II. These scat-
tering lengths are defined by the scattering amplitudes
at the threshold energy for the diagonal channels and at
the average of the threshold energies for the o↵-diagonal
K�p-K̄0n channel. Their real and imaginary parts agree
well with the original amplitudes [33, 34] within their un-
certainties. The K�d scattering length is then calculated
from Eqs. (20) and (21) as

aK�d = (�1.42 + i 1.60) fm. (22)

This result remains unchanged when we adopt a realis-
tic deuteron wavefunction (including the D-wave compo-
nent) generated from the CD-Bonn potential [53].
Next we apply the improved Deser formulae (18) and

(19) to kaonic deuterium. The results are summarized
in Table VII together with that from the full three-body
calculation. The logarithmic correction term is now in-
creased as |µK�d aK�d/(µK�p aK�p)| ⇠ 1.3, so the dif-
ference between Eqs. (18) and (19) becomes larger than
that in kaonic hydrogen. In addition, the deviation from
the full three-body calculation is of the order of &100 eV.
Note however that the K�d scattering length in

Eq. (22) is estimated in the FCA limit. Hence it can
be di↵erent from the exact value. For instance, the im-
portance of recoil corrections, naturally included in the
full three-body calculation but neglected in FCA, is dis-
cussed in Refs. [61, 63]. In addition, the determination of
the precise energy of the two-body K̄N system is subject
to some uncertainties.

a

Resummed version
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In the K�p system, a variation of � within its upper
and lower limits changes �E by less than 10%, whereas
� changes by more than 30%. On the other hand, the
same variation of � in the K�pn system induces a change
�E by 170 eV while � remains stable around 1 keV.

One concludes that an accuracy of about 25% in a
measurement of the 1S shift in kaonic deuterium would
already improve the determination of the I = 1 K̄N
interaction considerably over the kaonic hydrogen result.
The 30-60 eV precision to be expected in the planned
experiments [36, 37] falls well within that range.

TABLE V. Level shifts and decay widths (in eV) of kaonic
hydrogen and deuterium computed with di↵erent I = 1
strengths of the K̄N interaction. The experimental level
shift data of kaonic hydrogen is (�E,�) = (283 ± 36 ± 6,
541± 89± 22) eV [31, 32].

K�p K�d
� �E � �E �
1.08 287 648 676 1020
1.00 283 607 670 1016
�0.17 310 430 506 980

C. Improved Deser formulae for kaonic deuterium

The improved Deser formula [43, 51], derived from
non-relativistic e↵ective field theory (EFT), is frequently
used in the investigation of strong-interaction e↵ects in
hadronic atoms. The 1S level shift �E and width � of a
kaonic atom can be estimated by the relation [43, 51]:

�E � i�

2
= �2µ2↵3a[1� 2µ↵(ln↵� 1)a], (18)

where µ is the kaon-nucleus reduced mass, ↵ is the fine
structure constant and a is the K�-nucleus scattering
length. The logarithmically enhanced correction term
can be resummed to all orders [61], providing a “double-
improved” Deser formula:

�E � i�

2
= � 2µ2↵3a

1 + 2µ↵(ln↵� 1)a
. (19)

In this section we compare our full three-body calculation
results with the results obtained from Eqs. (18) and (19).
But let us first examine the shift and width of kaonic
hydrogen in this context. The K�p scattering length
obtained by solving the two-body Schrödinger equation
with the Kyoto K̄N potential is shown in Table II. Us-
ing Eqs. (18) and (19) one finds the results shown in
Table VI. It is evident that the improved Deser formula
works reasonably well for kaonic hydrogen, and the re-
summed version indeed improves the accuracy further.

Estimates of the level shift and width of kaonic deu-
terium using the Deser formulae require the K�d scat-
tering length aK�d as input. In the fixed center approx-
imation (FCA) for the nucleons, aK�d derived from a

TABLE VI. Level shift and width of kaonic hydrogen obtained
by solving the Schrödinger equation with the Kyoto K̄N po-
tential, and by using the improved Deser formula and its re-
summed version.

�E (eV) � (eV)
Full Schrödinger equation 283 607
Improved Deser formula (18) 293 596
Resummed formula (19) 284 605

multiple scattering series is given as [43, 62]

aK�d =
µK�d

mK�

Z
d3r ⇢d(r) ãK�d(r), (20)

ãK�d(r) =
ãp + ãn + (2ãpãn � ã2

ex

)/r � 2ã2
ex

ãn/r
2

1� ãpãn/r2 + ã2
ex

ãn/r3
,

(21)

with the K�-deuteron reduced mass µK�d, and ⇢d(r)
is the nucleon density distribution in the deuteron, ob-
tained in the present case using the Minnesota poten-
tial. The scattering lengths are defined as ãp ⌘ ãK�p,
ãn ⌘ ãK�n and ã2

ex

⌘ ã2
K�p- ¯K0n

/(1 + ã
¯K0n/r), and the

scattering lengths ã
¯KN in the laboratory frame are given

as ã
¯KN ⌘ mK

µK̄N
a

¯KN with the K̄N reduced mass µ
¯KN .

Using the Kyoto K̄N potential, the resulting two-body
K̄N scattering lengths are shown in Table II. These scat-
tering lengths are defined by the scattering amplitudes
at the threshold energy for the diagonal channels and at
the average of the threshold energies for the o↵-diagonal
K�p-K̄0n channel. Their real and imaginary parts agree
well with the original amplitudes [33, 34] within their un-
certainties. The K�d scattering length is then calculated
from Eqs. (20) and (21) as

aK�d = (�1.42 + i 1.60) fm. (22)

This result remains unchanged when we adopt a realis-
tic deuteron wavefunction (including the D-wave compo-
nent) generated from the CD-Bonn potential [53].
Next we apply the improved Deser formulae (18) and

(19) to kaonic deuterium. The results are summarized
in Table VII together with that from the full three-body
calculation. The logarithmic correction term is now in-
creased as |µK�d aK�d/(µK�p aK�p)| ⇠ 1.3, so the dif-
ference between Eqs. (18) and (19) becomes larger than
that in kaonic hydrogen. In addition, the deviation from
the full three-body calculation is of the order of &100 eV.
Note however that the K�d scattering length in

Eq. (22) is estimated in the FCA limit. Hence it can
be di↵erent from the exact value. For instance, the im-
portance of recoil corrections, naturally included in the
full three-body calculation but neglected in FCA, is dis-
cussed in Refs. [61, 63]. In addition, the determination of
the precise energy of the two-body K̄N system is subject
to some uncertainties.

…works well for kaonic hydrogen (with Kyoto        potential) :
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In the K�p system, a variation of � within its upper
and lower limits changes �E by less than 10%, whereas
� changes by more than 30%. On the other hand, the
same variation of � in the K�pn system induces a change
�E by 170 eV while � remains stable around 1 keV.

One concludes that an accuracy of about 25% in a
measurement of the 1S shift in kaonic deuterium would
already improve the determination of the I = 1 K̄N
interaction considerably over the kaonic hydrogen result.
The 30-60 eV precision to be expected in the planned
experiments [36, 37] falls well within that range.

TABLE V. Level shifts and decay widths (in eV) of kaonic
hydrogen and deuterium computed with di↵erent I = 1
strengths of the K̄N interaction. The experimental level
shift data of kaonic hydrogen is (�E,�) = (283 ± 36 ± 6,
541± 89± 22) eV [31, 32].

K�p K�d
� �E � �E �
1.08 287 648 676 1020
1.00 283 607 670 1016
�0.17 310 430 506 980

C. Improved Deser formulae for kaonic deuterium

The improved Deser formula [43, 51], derived from
non-relativistic e↵ective field theory (EFT), is frequently
used in the investigation of strong-interaction e↵ects in
hadronic atoms. The 1S level shift �E and width � of a
kaonic atom can be estimated by the relation [43, 51]:

�E � i�

2
= �2µ2↵3a[1� 2µ↵(ln↵� 1)a], (18)

where µ is the kaon-nucleus reduced mass, ↵ is the fine
structure constant and a is the K�-nucleus scattering
length. The logarithmically enhanced correction term
can be resummed to all orders [61], providing a “double-
improved” Deser formula:

�E � i�

2
= � 2µ2↵3a

1 + 2µ↵(ln↵� 1)a
. (19)

In this section we compare our full three-body calculation
results with the results obtained from Eqs. (18) and (19).
But let us first examine the shift and width of kaonic
hydrogen in this context. The K�p scattering length
obtained by solving the two-body Schrödinger equation
with the Kyoto K̄N potential is shown in Table II. Us-
ing Eqs. (18) and (19) one finds the results shown in
Table VI. It is evident that the improved Deser formula
works reasonably well for kaonic hydrogen, and the re-
summed version indeed improves the accuracy further.

Estimates of the level shift and width of kaonic deu-
terium using the Deser formulae require the K�d scat-
tering length aK�d as input. In the fixed center approx-
imation (FCA) for the nucleons, aK�d derived from a

TABLE VI. Level shift and width of kaonic hydrogen obtained
by solving the Schrödinger equation with the Kyoto K̄N po-
tential, and by using the improved Deser formula and its re-
summed version.

�E (eV) � (eV)
Full Schrödinger equation 283 607
Improved Deser formula (18) 293 596
Resummed formula (19) 284 605

multiple scattering series is given as [43, 62]

aK�d =
µK�d

mK�

Z
d3r ⇢d(r) ãK�d(r), (20)

ãK�d(r) =
ãp + ãn + (2ãpãn � ã2

ex

)/r � 2ã2
ex

ãn/r
2

1� ãpãn/r2 + ã2
ex

ãn/r3
,

(21)

with the K�-deuteron reduced mass µK�d, and ⇢d(r)
is the nucleon density distribution in the deuteron, ob-
tained in the present case using the Minnesota poten-
tial. The scattering lengths are defined as ãp ⌘ ãK�p,
ãn ⌘ ãK�n and ã2

ex

⌘ ã2
K�p- ¯K0n

/(1 + ã
¯K0n/r), and the

scattering lengths ã
¯KN in the laboratory frame are given

as ã
¯KN ⌘ mK

µK̄N
a

¯KN with the K̄N reduced mass µ
¯KN .

Using the Kyoto K̄N potential, the resulting two-body
K̄N scattering lengths are shown in Table II. These scat-
tering lengths are defined by the scattering amplitudes
at the threshold energy for the diagonal channels and at
the average of the threshold energies for the o↵-diagonal
K�p-K̄0n channel. Their real and imaginary parts agree
well with the original amplitudes [33, 34] within their un-
certainties. The K�d scattering length is then calculated
from Eqs. (20) and (21) as

aK�d = (�1.42 + i 1.60) fm. (22)

This result remains unchanged when we adopt a realis-
tic deuteron wavefunction (including the D-wave compo-
nent) generated from the CD-Bonn potential [53].
Next we apply the improved Deser formulae (18) and

(19) to kaonic deuterium. The results are summarized
in Table VII together with that from the full three-body
calculation. The logarithmic correction term is now in-
creased as |µK�d aK�d/(µK�p aK�p)| ⇠ 1.3, so the dif-
ference between Eqs. (18) and (19) becomes larger than
that in kaonic hydrogen. In addition, the deviation from
the full three-body calculation is of the order of &100 eV.
Note however that the K�d scattering length in

Eq. (22) is estimated in the FCA limit. Hence it can
be di↵erent from the exact value. For instance, the im-
portance of recoil corrections, naturally included in the
full three-body calculation but neglected in FCA, is dis-
cussed in Refs. [61, 63]. In addition, the determination of
the precise energy of the two-body K̄N system is subject
to some uncertainties.
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In the K�p system, a variation of � within its upper
and lower limits changes �E by less than 10%, whereas
� changes by more than 30%. On the other hand, the
same variation of � in the K�pn system induces a change
�E by 170 eV while � remains stable around 1 keV.

One concludes that an accuracy of about 25% in a
measurement of the 1S shift in kaonic deuterium would
already improve the determination of the I = 1 K̄N
interaction considerably over the kaonic hydrogen result.
The 30-60 eV precision to be expected in the planned
experiments [36, 37] falls well within that range.

TABLE V. Level shifts and decay widths (in eV) of kaonic
hydrogen and deuterium computed with di↵erent I = 1
strengths of the K̄N interaction. The experimental level
shift data of kaonic hydrogen is (�E,�) = (283 ± 36 ± 6,
541± 89± 22) eV [31, 32].

K�p K�d
� �E � �E �
1.08 287 648 676 1020
1.00 283 607 670 1016
�0.17 310 430 506 980

C. Improved Deser formulae for kaonic deuterium

The improved Deser formula [43, 51], derived from
non-relativistic e↵ective field theory (EFT), is frequently
used in the investigation of strong-interaction e↵ects in
hadronic atoms. The 1S level shift �E and width � of a
kaonic atom can be estimated by the relation [43, 51]:

�E � i�

2
= �2µ2↵3a[1� 2µ↵(ln↵� 1)a], (18)

where µ is the kaon-nucleus reduced mass, ↵ is the fine
structure constant and a is the K�-nucleus scattering
length. The logarithmically enhanced correction term
can be resummed to all orders [61], providing a “double-
improved” Deser formula:

�E � i�

2
= � 2µ2↵3a

1 + 2µ↵(ln↵� 1)a
. (19)

In this section we compare our full three-body calculation
results with the results obtained from Eqs. (18) and (19).
But let us first examine the shift and width of kaonic
hydrogen in this context. The K�p scattering length
obtained by solving the two-body Schrödinger equation
with the Kyoto K̄N potential is shown in Table II. Us-
ing Eqs. (18) and (19) one finds the results shown in
Table VI. It is evident that the improved Deser formula
works reasonably well for kaonic hydrogen, and the re-
summed version indeed improves the accuracy further.

Estimates of the level shift and width of kaonic deu-
terium using the Deser formulae require the K�d scat-
tering length aK�d as input. In the fixed center approx-
imation (FCA) for the nucleons, aK�d derived from a

TABLE VI. Level shift and width of kaonic hydrogen obtained
by solving the Schrödinger equation with the Kyoto K̄N po-
tential, and by using the improved Deser formula and its re-
summed version.

�E (eV) � (eV)
Full Schrödinger equation 283 607
Improved Deser formula (18) 293 596
Resummed formula (19) 284 605

multiple scattering series is given as [43, 62]

aK�d =
µK�d

mK�

Z
d3r ⇢d(r) ãK�d(r), (20)

ãK�d(r) =
ãp + ãn + (2ãpãn � ã2

ex

)/r � 2ã2
ex

ãn/r
2

1� ãpãn/r2 + ã2
ex

ãn/r3
,

(21)

with the K�-deuteron reduced mass µK�d, and ⇢d(r)
is the nucleon density distribution in the deuteron, ob-
tained in the present case using the Minnesota poten-
tial. The scattering lengths are defined as ãp ⌘ ãK�p,
ãn ⌘ ãK�n and ã2

ex

⌘ ã2
K�p- ¯K0n

/(1 + ã
¯K0n/r), and the

scattering lengths ã
¯KN in the laboratory frame are given

as ã
¯KN ⌘ mK

µK̄N
a

¯KN with the K̄N reduced mass µ
¯KN .

Using the Kyoto K̄N potential, the resulting two-body
K̄N scattering lengths are shown in Table II. These scat-
tering lengths are defined by the scattering amplitudes
at the threshold energy for the diagonal channels and at
the average of the threshold energies for the o↵-diagonal
K�p-K̄0n channel. Their real and imaginary parts agree
well with the original amplitudes [33, 34] within their un-
certainties. The K�d scattering length is then calculated
from Eqs. (20) and (21) as

aK�d = (�1.42 + i 1.60) fm. (22)

This result remains unchanged when we adopt a realis-
tic deuteron wavefunction (including the D-wave compo-
nent) generated from the CD-Bonn potential [53].
Next we apply the improved Deser formulae (18) and

(19) to kaonic deuterium. The results are summarized
in Table VII together with that from the full three-body
calculation. The logarithmic correction term is now in-
creased as |µK�d aK�d/(µK�p aK�p)| ⇠ 1.3, so the dif-
ference between Eqs. (18) and (19) becomes larger than
that in kaonic hydrogen. In addition, the deviation from
the full three-body calculation is of the order of &100 eV.
Note however that the K�d scattering length in

Eq. (22) is estimated in the FCA limit. Hence it can
be di↵erent from the exact value. For instance, the im-
portance of recoil corrections, naturally included in the
full three-body calculation but neglected in FCA, is dis-
cussed in Refs. [61, 63]. In addition, the determination of
the precise energy of the two-body K̄N system is subject
to some uncertainties.
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In the K�p system, a variation of � within its upper
and lower limits changes �E by less than 10%, whereas
� changes by more than 30%. On the other hand, the
same variation of � in the K�pn system induces a change
�E by 170 eV while � remains stable around 1 keV.

One concludes that an accuracy of about 25% in a
measurement of the 1S shift in kaonic deuterium would
already improve the determination of the I = 1 K̄N
interaction considerably over the kaonic hydrogen result.
The 30-60 eV precision to be expected in the planned
experiments [36, 37] falls well within that range.

TABLE V. Level shifts and decay widths (in eV) of kaonic
hydrogen and deuterium computed with di↵erent I = 1
strengths of the K̄N interaction. The experimental level
shift data of kaonic hydrogen is (�E,�) = (283 ± 36 ± 6,
541± 89± 22) eV [31, 32].

K�p K�d
� �E � �E �
1.08 287 648 676 1020
1.00 283 607 670 1016
�0.17 310 430 506 980

C. Improved Deser formulae for kaonic deuterium

The improved Deser formula [43, 51], derived from
non-relativistic e↵ective field theory (EFT), is frequently
used in the investigation of strong-interaction e↵ects in
hadronic atoms. The 1S level shift �E and width � of a
kaonic atom can be estimated by the relation [43, 51]:

�E � i�

2
= �2µ2↵3a[1� 2µ↵(ln↵� 1)a], (18)

where µ is the kaon-nucleus reduced mass, ↵ is the fine
structure constant and a is the K�-nucleus scattering
length. The logarithmically enhanced correction term
can be resummed to all orders [61], providing a “double-
improved” Deser formula:

�E � i�

2
= � 2µ2↵3a

1 + 2µ↵(ln↵� 1)a
. (19)

In this section we compare our full three-body calculation
results with the results obtained from Eqs. (18) and (19).
But let us first examine the shift and width of kaonic
hydrogen in this context. The K�p scattering length
obtained by solving the two-body Schrödinger equation
with the Kyoto K̄N potential is shown in Table II. Us-
ing Eqs. (18) and (19) one finds the results shown in
Table VI. It is evident that the improved Deser formula
works reasonably well for kaonic hydrogen, and the re-
summed version indeed improves the accuracy further.

Estimates of the level shift and width of kaonic deu-
terium using the Deser formulae require the K�d scat-
tering length aK�d as input. In the fixed center approx-
imation (FCA) for the nucleons, aK�d derived from a

TABLE VI. Level shift and width of kaonic hydrogen obtained
by solving the Schrödinger equation with the Kyoto K̄N po-
tential, and by using the improved Deser formula and its re-
summed version.

�E (eV) � (eV)
Full Schrödinger equation 283 607
Improved Deser formula (18) 293 596
Resummed formula (19) 284 605

multiple scattering series is given as [43, 62]

aK�d =
µK�d

mK�

Z
d3r ⇢d(r) ãK�d(r), (20)

ãK�d(r) =
ãp + ãn + (2ãpãn � ã2

ex

)/r � 2ã2
ex

ãn/r
2

1� ãpãn/r2 + ã2
ex

ãn/r3
,

(21)

with the K�-deuteron reduced mass µK�d, and ⇢d(r)
is the nucleon density distribution in the deuteron, ob-
tained in the present case using the Minnesota poten-
tial. The scattering lengths are defined as ãp ⌘ ãK�p,
ãn ⌘ ãK�n and ã2

ex

⌘ ã2
K�p- ¯K0n

/(1 + ã
¯K0n/r), and the

scattering lengths ã
¯KN in the laboratory frame are given

as ã
¯KN ⌘ mK

µK̄N
a

¯KN with the K̄N reduced mass µ
¯KN .

Using the Kyoto K̄N potential, the resulting two-body
K̄N scattering lengths are shown in Table II. These scat-
tering lengths are defined by the scattering amplitudes
at the threshold energy for the diagonal channels and at
the average of the threshold energies for the o↵-diagonal
K�p-K̄0n channel. Their real and imaginary parts agree
well with the original amplitudes [33, 34] within their un-
certainties. The K�d scattering length is then calculated
from Eqs. (20) and (21) as

aK�d = (�1.42 + i 1.60) fm. (22)

This result remains unchanged when we adopt a realis-
tic deuteron wavefunction (including the D-wave compo-
nent) generated from the CD-Bonn potential [53].
Next we apply the improved Deser formulae (18) and

(19) to kaonic deuterium. The results are summarized
in Table VII together with that from the full three-body
calculation. The logarithmic correction term is now in-
creased as |µK�d aK�d/(µK�p aK�p)| ⇠ 1.3, so the dif-
ference between Eqs. (18) and (19) becomes larger than
that in kaonic hydrogen. In addition, the deviation from
the full three-body calculation is of the order of &100 eV.
Note however that the K�d scattering length in

Eq. (22) is estimated in the FCA limit. Hence it can
be di↵erent from the exact value. For instance, the im-
portance of recoil corrections, naturally included in the
full three-body calculation but neglected in FCA, is dis-
cussed in Refs. [61, 63]. In addition, the determination of
the precise energy of the two-body K̄N system is subject
to some uncertainties.
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In the K�p system, a variation of � within its upper
and lower limits changes �E by less than 10%, whereas
� changes by more than 30%. On the other hand, the
same variation of � in the K�pn system induces a change
�E by 170 eV while � remains stable around 1 keV.

One concludes that an accuracy of about 25% in a
measurement of the 1S shift in kaonic deuterium would
already improve the determination of the I = 1 K̄N
interaction considerably over the kaonic hydrogen result.
The 30-60 eV precision to be expected in the planned
experiments [36, 37] falls well within that range.

TABLE V. Level shifts and decay widths (in eV) of kaonic
hydrogen and deuterium computed with di↵erent I = 1
strengths of the K̄N interaction. The experimental level
shift data of kaonic hydrogen is (�E,�) = (283 ± 36 ± 6,
541± 89± 22) eV [31, 32].

K�p K�d
� �E � �E �
1.08 287 648 676 1020
1.00 283 607 670 1016
�0.17 310 430 506 980

C. Improved Deser formulae for kaonic deuterium

The improved Deser formula [43, 51], derived from
non-relativistic e↵ective field theory (EFT), is frequently
used in the investigation of strong-interaction e↵ects in
hadronic atoms. The 1S level shift �E and width � of a
kaonic atom can be estimated by the relation [43, 51]:

�E � i�

2
= �2µ2↵3a[1� 2µ↵(ln↵� 1)a], (18)

where µ is the kaon-nucleus reduced mass, ↵ is the fine
structure constant and a is the K�-nucleus scattering
length. The logarithmically enhanced correction term
can be resummed to all orders [61], providing a “double-
improved” Deser formula:

�E � i�

2
= � 2µ2↵3a

1 + 2µ↵(ln↵� 1)a
. (19)

In this section we compare our full three-body calculation
results with the results obtained from Eqs. (18) and (19).
But let us first examine the shift and width of kaonic
hydrogen in this context. The K�p scattering length
obtained by solving the two-body Schrödinger equation
with the Kyoto K̄N potential is shown in Table II. Us-
ing Eqs. (18) and (19) one finds the results shown in
Table VI. It is evident that the improved Deser formula
works reasonably well for kaonic hydrogen, and the re-
summed version indeed improves the accuracy further.

Estimates of the level shift and width of kaonic deu-
terium using the Deser formulae require the K�d scat-
tering length aK�d as input. In the fixed center approx-
imation (FCA) for the nucleons, aK�d derived from a

TABLE VI. Level shift and width of kaonic hydrogen obtained
by solving the Schrödinger equation with the Kyoto K̄N po-
tential, and by using the improved Deser formula and its re-
summed version.

�E (eV) � (eV)
Full Schrödinger equation 283 607
Improved Deser formula (18) 293 596
Resummed formula (19) 284 605

multiple scattering series is given as [43, 62]

aK�d =
µK�d

mK�

Z
d3r ⇢d(r) ãK�d(r), (20)

ãK�d(r) =
ãp + ãn + (2ãpãn � ã2

ex

)/r � 2ã2
ex

ãn/r
2

1� ãpãn/r2 + ã2
ex

ãn/r3
,

(21)

with the K�-deuteron reduced mass µK�d, and ⇢d(r)
is the nucleon density distribution in the deuteron, ob-
tained in the present case using the Minnesota poten-
tial. The scattering lengths are defined as ãp ⌘ ãK�p,
ãn ⌘ ãK�n and ã2

ex

⌘ ã2
K�p- ¯K0n

/(1 + ã
¯K0n/r), and the

scattering lengths ã
¯KN in the laboratory frame are given

as ã
¯KN ⌘ mK
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¯KN with the K̄N reduced mass µ
¯KN .

Using the Kyoto K̄N potential, the resulting two-body
K̄N scattering lengths are shown in Table II. These scat-
tering lengths are defined by the scattering amplitudes
at the threshold energy for the diagonal channels and at
the average of the threshold energies for the o↵-diagonal
K�p-K̄0n channel. Their real and imaginary parts agree
well with the original amplitudes [33, 34] within their un-
certainties. The K�d scattering length is then calculated
from Eqs. (20) and (21) as

aK�d = (�1.42 + i 1.60) fm. (22)

This result remains unchanged when we adopt a realis-
tic deuteron wavefunction (including the D-wave compo-
nent) generated from the CD-Bonn potential [53].
Next we apply the improved Deser formulae (18) and

(19) to kaonic deuterium. The results are summarized
in Table VII together with that from the full three-body
calculation. The logarithmic correction term is now in-
creased as |µK�d aK�d/(µK�p aK�p)| ⇠ 1.3, so the dif-
ference between Eqs. (18) and (19) becomes larger than
that in kaonic hydrogen. In addition, the deviation from
the full three-body calculation is of the order of &100 eV.
Note however that the K�d scattering length in

Eq. (22) is estimated in the FCA limit. Hence it can
be di↵erent from the exact value. For instance, the im-
portance of recoil corrections, naturally included in the
full three-body calculation but neglected in FCA, is dis-
cussed in Refs. [61, 63]. In addition, the determination of
the precise energy of the two-body K̄N system is subject
to some uncertainties.
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In the K�p system, a variation of � within its upper
and lower limits changes �E by less than 10%, whereas
� changes by more than 30%. On the other hand, the
same variation of � in the K�pn system induces a change
�E by 170 eV while � remains stable around 1 keV.

One concludes that an accuracy of about 25% in a
measurement of the 1S shift in kaonic deuterium would
already improve the determination of the I = 1 K̄N
interaction considerably over the kaonic hydrogen result.
The 30-60 eV precision to be expected in the planned
experiments [36, 37] falls well within that range.

TABLE V. Level shifts and decay widths (in eV) of kaonic
hydrogen and deuterium computed with di↵erent I = 1
strengths of the K̄N interaction. The experimental level
shift data of kaonic hydrogen is (�E,�) = (283 ± 36 ± 6,
541± 89± 22) eV [31, 32].
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C. Improved Deser formulae for kaonic deuterium

The improved Deser formula [43, 51], derived from
non-relativistic e↵ective field theory (EFT), is frequently
used in the investigation of strong-interaction e↵ects in
hadronic atoms. The 1S level shift �E and width � of a
kaonic atom can be estimated by the relation [43, 51]:
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where µ is the kaon-nucleus reduced mass, ↵ is the fine
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length. The logarithmically enhanced correction term
can be resummed to all orders [61], providing a “double-
improved” Deser formula:
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In this section we compare our full three-body calculation
results with the results obtained from Eqs. (18) and (19).
But let us first examine the shift and width of kaonic
hydrogen in this context. The K�p scattering length
obtained by solving the two-body Schrödinger equation
with the Kyoto K̄N potential is shown in Table II. Us-
ing Eqs. (18) and (19) one finds the results shown in
Table VI. It is evident that the improved Deser formula
works reasonably well for kaonic hydrogen, and the re-
summed version indeed improves the accuracy further.

Estimates of the level shift and width of kaonic deu-
terium using the Deser formulae require the K�d scat-
tering length aK�d as input. In the fixed center approx-
imation (FCA) for the nucleons, aK�d derived from a
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ex

)/r � 2ã2
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Using the Kyoto K̄N potential, the resulting two-body
K̄N scattering lengths are shown in Table II. These scat-
tering lengths are defined by the scattering amplitudes
at the threshold energy for the diagonal channels and at
the average of the threshold energies for the o↵-diagonal
K�p-K̄0n channel. Their real and imaginary parts agree
well with the original amplitudes [33, 34] within their un-
certainties. The K�d scattering length is then calculated
from Eqs. (20) and (21) as

aK�d = (�1.42 + i 1.60) fm. (22)

This result remains unchanged when we adopt a realis-
tic deuteron wavefunction (including the D-wave compo-
nent) generated from the CD-Bonn potential [53].
Next we apply the improved Deser formulae (18) and

(19) to kaonic deuterium. The results are summarized
in Table VII together with that from the full three-body
calculation. The logarithmic correction term is now in-
creased as |µK�d aK�d/(µK�p aK�p)| ⇠ 1.3, so the dif-
ference between Eqs. (18) and (19) becomes larger than
that in kaonic hydrogen. In addition, the deviation from
the full three-body calculation is of the order of &100 eV.
Note however that the K�d scattering length in

Eq. (22) is estimated in the FCA limit. Hence it can
be di↵erent from the exact value. For instance, the im-
portance of recoil corrections, naturally included in the
full three-body calculation but neglected in FCA, is dis-
cussed in Refs. [61, 63]. In addition, the determination of
the precise energy of the two-body K̄N system is subject
to some uncertainties.
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One concludes that an accuracy of about 25% in a
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already improve the determination of the I = 1 K̄N
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The 30-60 eV precision to be expected in the planned
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where µ is the kaon-nucleus reduced mass, ↵ is the fine
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In this section we compare our full three-body calculation
results with the results obtained from Eqs. (18) and (19).
But let us first examine the shift and width of kaonic
hydrogen in this context. The K�p scattering length
obtained by solving the two-body Schrödinger equation
with the Kyoto K̄N potential is shown in Table II. Us-
ing Eqs. (18) and (19) one finds the results shown in
Table VI. It is evident that the improved Deser formula
works reasonably well for kaonic hydrogen, and the re-
summed version indeed improves the accuracy further.

Estimates of the level shift and width of kaonic deu-
terium using the Deser formulae require the K�d scat-
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1� ãpãn/r2 + ã2
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with the K�-deuteron reduced mass µK�d, and ⇢d(r)
is the nucleon density distribution in the deuteron, ob-
tained in the present case using the Minnesota poten-
tial. The scattering lengths are defined as ãp ⌘ ãK�p,
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Using the Kyoto K̄N potential, the resulting two-body
K̄N scattering lengths are shown in Table II. These scat-
tering lengths are defined by the scattering amplitudes
at the threshold energy for the diagonal channels and at
the average of the threshold energies for the o↵-diagonal
K�p-K̄0n channel. Their real and imaginary parts agree
well with the original amplitudes [33, 34] within their un-
certainties. The K�d scattering length is then calculated
from Eqs. (20) and (21) as

aK�d = (�1.42 + i 1.60) fm. (22)

This result remains unchanged when we adopt a realis-
tic deuteron wavefunction (including the D-wave compo-
nent) generated from the CD-Bonn potential [53].
Next we apply the improved Deser formulae (18) and

(19) to kaonic deuterium. The results are summarized
in Table VII together with that from the full three-body
calculation. The logarithmic correction term is now in-
creased as |µK�d aK�d/(µK�p aK�p)| ⇠ 1.3, so the dif-
ference between Eqs. (18) and (19) becomes larger than
that in kaonic hydrogen. In addition, the deviation from
the full three-body calculation is of the order of &100 eV.
Note however that the K�d scattering length in

Eq. (22) is estimated in the FCA limit. Hence it can
be di↵erent from the exact value. For instance, the im-
portance of recoil corrections, naturally included in the
full three-body calculation but neglected in FCA, is dis-
cussed in Refs. [61, 63]. In addition, the determination of
the precise energy of the two-body K̄N system is subject
to some uncertainties.
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� changes by more than 30%. On the other hand, the
same variation of � in the K�pn system induces a change
�E by 170 eV while � remains stable around 1 keV.

One concludes that an accuracy of about 25% in a
measurement of the 1S shift in kaonic deuterium would
already improve the determination of the I = 1 K̄N
interaction considerably over the kaonic hydrogen result.
The 30-60 eV precision to be expected in the planned
experiments [36, 37] falls well within that range.
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kaonic atom can be estimated by the relation [43, 51]:
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where µ is the kaon-nucleus reduced mass, ↵ is the fine
structure constant and a is the K�-nucleus scattering
length. The logarithmically enhanced correction term
can be resummed to all orders [61], providing a “double-
improved” Deser formula:
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In this section we compare our full three-body calculation
results with the results obtained from Eqs. (18) and (19).
But let us first examine the shift and width of kaonic
hydrogen in this context. The K�p scattering length
obtained by solving the two-body Schrödinger equation
with the Kyoto K̄N potential is shown in Table II. Us-
ing Eqs. (18) and (19) one finds the results shown in
Table VI. It is evident that the improved Deser formula
works reasonably well for kaonic hydrogen, and the re-
summed version indeed improves the accuracy further.

Estimates of the level shift and width of kaonic deu-
terium using the Deser formulae require the K�d scat-
tering length aK�d as input. In the fixed center approx-
imation (FCA) for the nucleons, aK�d derived from a
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1� ãpãn/r2 + ã2
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with the K�-deuteron reduced mass µK�d, and ⇢d(r)
is the nucleon density distribution in the deuteron, ob-
tained in the present case using the Minnesota poten-
tial. The scattering lengths are defined as ãp ⌘ ãK�p,
ãn ⌘ ãK�n and ã2
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scattering lengths ã
¯KN in the laboratory frame are given

as ã
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¯KN with the K̄N reduced mass µ
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Using the Kyoto K̄N potential, the resulting two-body
K̄N scattering lengths are shown in Table II. These scat-
tering lengths are defined by the scattering amplitudes
at the threshold energy for the diagonal channels and at
the average of the threshold energies for the o↵-diagonal
K�p-K̄0n channel. Their real and imaginary parts agree
well with the original amplitudes [33, 34] within their un-
certainties. The K�d scattering length is then calculated
from Eqs. (20) and (21) as

aK�d = (�1.42 + i 1.60) fm. (22)

This result remains unchanged when we adopt a realis-
tic deuteron wavefunction (including the D-wave compo-
nent) generated from the CD-Bonn potential [53].
Next we apply the improved Deser formulae (18) and

(19) to kaonic deuterium. The results are summarized
in Table VII together with that from the full three-body
calculation. The logarithmic correction term is now in-
creased as |µK�d aK�d/(µK�p aK�p)| ⇠ 1.3, so the dif-
ference between Eqs. (18) and (19) becomes larger than
that in kaonic hydrogen. In addition, the deviation from
the full three-body calculation is of the order of &100 eV.
Note however that the K�d scattering length in

Eq. (22) is estimated in the FCA limit. Hence it can
be di↵erent from the exact value. For instance, the im-
portance of recoil corrections, naturally included in the
full three-body calculation but neglected in FCA, is dis-
cussed in Refs. [61, 63]. In addition, the determination of
the precise energy of the two-body K̄N system is subject
to some uncertainties.
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� changes by more than 30%. On the other hand, the
same variation of � in the K�pn system induces a change
�E by 170 eV while � remains stable around 1 keV.

One concludes that an accuracy of about 25% in a
measurement of the 1S shift in kaonic deuterium would
already improve the determination of the I = 1 K̄N
interaction considerably over the kaonic hydrogen result.
The 30-60 eV precision to be expected in the planned
experiments [36, 37] falls well within that range.

TABLE V. Level shifts and decay widths (in eV) of kaonic
hydrogen and deuterium computed with di↵erent I = 1
strengths of the K̄N interaction. The experimental level
shift data of kaonic hydrogen is (�E,�) = (283 ± 36 ± 6,
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The improved Deser formula [43, 51], derived from
non-relativistic e↵ective field theory (EFT), is frequently
used in the investigation of strong-interaction e↵ects in
hadronic atoms. The 1S level shift �E and width � of a
kaonic atom can be estimated by the relation [43, 51]:
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where µ is the kaon-nucleus reduced mass, ↵ is the fine
structure constant and a is the K�-nucleus scattering
length. The logarithmically enhanced correction term
can be resummed to all orders [61], providing a “double-
improved” Deser formula:
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In this section we compare our full three-body calculation
results with the results obtained from Eqs. (18) and (19).
But let us first examine the shift and width of kaonic
hydrogen in this context. The K�p scattering length
obtained by solving the two-body Schrödinger equation
with the Kyoto K̄N potential is shown in Table II. Us-
ing Eqs. (18) and (19) one finds the results shown in
Table VI. It is evident that the improved Deser formula
works reasonably well for kaonic hydrogen, and the re-
summed version indeed improves the accuracy further.

Estimates of the level shift and width of kaonic deu-
terium using the Deser formulae require the K�d scat-
tering length aK�d as input. In the fixed center approx-
imation (FCA) for the nucleons, aK�d derived from a
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This result remains unchanged when we adopt a realis-
tic deuteron wavefunction (including the D-wave compo-
nent) generated from the CD-Bonn potential [53].
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(19) to kaonic deuterium. The results are summarized
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Eq. (22) is estimated in the FCA limit. Hence it can
be di↵erent from the exact value. For instance, the im-
portance of recoil corrections, naturally included in the
full three-body calculation but neglected in FCA, is dis-
cussed in Refs. [61, 63]. In addition, the determination of
the precise energy of the two-body K̄N system is subject
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In this section we compare our full three-body calculation
results with the results obtained from Eqs. (18) and (19).
But let us first examine the shift and width of kaonic
hydrogen in this context. The K�p scattering length
obtained by solving the two-body Schrödinger equation
with the Kyoto K̄N potential is shown in Table II. Us-
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/(1 + ã
¯K0n/r), and the

scattering lengths ã
¯KN in the laboratory frame are given

as ã
¯KN ⌘ mK

µK̄N
a

¯KN with the K̄N reduced mass µ
¯KN .

Using the Kyoto K̄N potential, the resulting two-body
K̄N scattering lengths are shown in Table II. These scat-
tering lengths are defined by the scattering amplitudes
at the threshold energy for the diagonal channels and at
the average of the threshold energies for the o↵-diagonal
K�p-K̄0n channel. Their real and imaginary parts agree
well with the original amplitudes [33, 34] within their un-
certainties. The K�d scattering length is then calculated
from Eqs. (20) and (21) as

aK�d = (�1.42 + i 1.60) fm. (22)

This result remains unchanged when we adopt a realis-
tic deuteron wavefunction (including the D-wave compo-
nent) generated from the CD-Bonn potential [53].
Next we apply the improved Deser formulae (18) and

(19) to kaonic deuterium. The results are summarized
in Table VII together with that from the full three-body
calculation. The logarithmic correction term is now in-
creased as |µK�d aK�d/(µK�p aK�p)| ⇠ 1.3, so the dif-
ference between Eqs. (18) and (19) becomes larger than
that in kaonic hydrogen. In addition, the deviation from
the full three-body calculation is of the order of &100 eV.
Note however that the K�d scattering length in

Eq. (22) is estimated in the FCA limit. Hence it can
be di↵erent from the exact value. For instance, the im-
portance of recoil corrections, naturally included in the
full three-body calculation but neglected in FCA, is dis-
cussed in Refs. [61, 63]. In addition, the determination of
the precise energy of the two-body K̄N system is subject
to some uncertainties.
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TABLE VII. Level shift and width of kaonic deuterium ob-
tained by solving the three-body Schrödinger equation with
the Kyoto K̄N potential, and by using the improved Deser
formula and its resummed version.

�E (eV) � (eV)
Full Schrödinger equation 670 1016
Improved Deser formula (18) 910 989
Resummed formula (19) 818 1188

Another source of small deviations are higher order
QED corrections such as electron vacuum polarization.
This e↵ect can be included as an e↵ective potential mod-
ifying the Coulomb interaction in the form [64]:

V (r) = �↵

r

"
1 +

2↵

3⇡

Z 1

1

due�2meru

✓
1 +

1

2u2

◆ p
u2 � 1

u2

#
,

where me is the electron mass. The first term is the or-
dinary Coulomb potential, and second term (the Uehling
potential) takes into account the vacuum polarization ef-
fect which is found to be small: The 1S level shift and
width of the kaonic deuterium including this correction
is �E � i�/2 = (670� i 519) eV. While the level shift is
unchanged, the decay width increases slightly by about
10 eV because the Uehling potential is attractive at very
short distances.

In summary the improved Deser formulae work well
for kaonic hydrogen but estimates based on these for-
mulae appear to be less accurate for kaonic deuterium
which does require a three-body treatment beyond fixed
nucleons if the aim is to reach a precision at the 10 eV
level.

At this point we can add a comment on the previ-
ously mentioned surprising fact that isospin-breaking ef-
fects, using physical masses of antikaons and nucleons,
are large in kaonic hydrogen but turn out to be small in
the full three-body calculation of kaonic deuterium. One
can trace this phenomenon by examining the improved
Deser formulae together with the multiple scattering rela-
tion (21). The prime source of the strong e↵ect in kaonic
hydrogen is a substantial change of the real part of the
K�p scattering length when using isospin-averaged in-
stead of physical masses. In kaonic deuterium, on the
other hand, the whole set of scattering lengths in Ta-
ble II enters Eq. (21), including aK�n with its positive
real part, so that the leading e↵ect from aK�p is largely
compensated. As a consequence, real parts of aK�d cal-
culated with physical or isospin-averaged masses now dif-
fer only by less than 5%, and this di↵erence is averaged
out further in the full three-body approach beyond fixed-
scatterer approximation.

Finally we examine possible uncertainties related
to the energy dependence of the K̄N potential,
V̂

¯KN (E
¯KN ). In the present study we have set E

¯KN = 0
at threshold, following Refs. [13, 14, 19]. The binding of

the nucleons in the deuteron may cause a shift of E
¯KN

towards the subthreshold region. In fact, the prescription
in Ref. [17] gives a large negative value for E

¯KN . Our es-
timate, derived and discussed in Appendix A, suggests
instead a small average shift, E

¯KN = �Bd/2 ⇠ �1.1
MeV, involving the deuteron binding energy Bd. With
this value we calculate the level shift and width of kaonic
deuterium using the resummed Deser formula (19) and
find (�E,�) = (869, 1310) eV, compared to (�E,�) =
(818, 1188) eV with E

¯KN = 0 (see Table VII). Thus the
changes induced by correcting the energy dependence in
V̂

¯KN (E
¯KN ) for deuteron binding tend to increase the

width of kaonic deuterium by about 10%, while the cor-
responding energy shift changes only marginally.

V. CONCLUSIONS

Precise three-body calculations have been performed
for the spectrum of kaonic deuterium and the evaluation
of the 1S level shift and width. The K̄NN three-body
wave function is expressed by a superposition of a large
set of correlated Gaussian basis functions. In order to de-
scribe both short-range strong interactions and the long-
range Coulomb interaction simultaneously, a large model
space needs to be considered covering all distance scales
ranging from 0.1 fm to several hundreds of fm.
The K̄N strong interaction is treated in terms of a

complex potential that accurately reproduces previous
results of coupled-channels calculations based on chiral
SU(3) dynamics. We have calculated the energy lev-
els of 1S, 2S and 2P kaonic deuterium states and find
that the K̄N strong interaction a↵ects only the S states,
inducing energy shifts from the levels characteristic of
the pure Coulomb and point charge limit of the K�d
atomic system. No energy shift is found for the 2P
state, so that the 1S level shift can be directly associ-
ated with the transition energy from the 2P to the 1S
state. The calculated 1S level shift of kaonic deuterium is
�E�i�/2=(670�i 508) eV, corresponding to a 2P ! 1S
transition energy of 7.134 keV. Following our previous
discussions we assign uncertainies of about 10% to � and
less than 10% to �E (not counting the approximately
20% uncertainties in the empirical SIDDHARTA kaonic
hydrogen constraints ).

In view of upcoming experimental investigations
we have also performed a test of the sensitivity of
kaonic deuterium observables with respect to the I = 1
component in the K̄N interaction, by varying selectively
the real part of the I = 1 K̄N potential strength within
the uncertainty limits deduced from the kaonic hydrogen
data. One can conclude from this test that the 1S level
shift of kaonic deuterium is indeed expected to provide
a significantly improved constraint on the I = 1 compo-
nent, as compared to the SIDDHARTA kaonic hydrogen
measurement [31, 32], if the deuterium level shift can
be determined within ⇠25% accuracy (corresponding to
⇠2% in the 2P ! 1S transition energy). This sets the

Assumptions behind Deser-Trueman formula NOT reliable for K-d
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In the K�p system, a variation of � within its upper
and lower limits changes �E by less than 10%, whereas
� changes by more than 30%. On the other hand, the
same variation of � in the K�pn system induces a change
�E by 170 eV while � remains stable around 1 keV.

One concludes that an accuracy of about 25% in a
measurement of the 1S shift in kaonic deuterium would
already improve the determination of the I = 1 K̄N
interaction considerably over the kaonic hydrogen result.
The 30-60 eV precision to be expected in the planned
experiments [36, 37] falls well within that range.

TABLE V. Level shifts and decay widths (in eV) of kaonic
hydrogen and deuterium computed with di↵erent I = 1
strengths of the K̄N interaction. The experimental level
shift data of kaonic hydrogen is (�E,�) = (283 ± 36 ± 6,
541± 89± 22) eV [31, 32].

K�p K�d
� �E � �E �
1.08 287 648 676 1020
1.00 283 607 670 1016
�0.17 310 430 506 980

C. Improved Deser formulae for kaonic deuterium

The improved Deser formula [43, 51], derived from
non-relativistic e↵ective field theory (EFT), is frequently
used in the investigation of strong-interaction e↵ects in
hadronic atoms. The 1S level shift �E and width � of a
kaonic atom can be estimated by the relation [43, 51]:

�E � i�

2
= �2µ2↵3a[1� 2µ↵(ln↵� 1)a], (18)

where µ is the kaon-nucleus reduced mass, ↵ is the fine
structure constant and a is the K�-nucleus scattering
length. The logarithmically enhanced correction term
can be resummed to all orders [61], providing a “double-
improved” Deser formula:

�E � i�

2
= � 2µ2↵3a

1 + 2µ↵(ln↵� 1)a
. (19)

In this section we compare our full three-body calculation
results with the results obtained from Eqs. (18) and (19).
But let us first examine the shift and width of kaonic
hydrogen in this context. The K�p scattering length
obtained by solving the two-body Schrödinger equation
with the Kyoto K̄N potential is shown in Table II. Us-
ing Eqs. (18) and (19) one finds the results shown in
Table VI. It is evident that the improved Deser formula
works reasonably well for kaonic hydrogen, and the re-
summed version indeed improves the accuracy further.

Estimates of the level shift and width of kaonic deu-
terium using the Deser formulae require the K�d scat-
tering length aK�d as input. In the fixed center approx-
imation (FCA) for the nucleons, aK�d derived from a

TABLE VI. Level shift and width of kaonic hydrogen obtained
by solving the Schrödinger equation with the Kyoto K̄N po-
tential, and by using the improved Deser formula and its re-
summed version.

�E (eV) � (eV)
Full Schrödinger equation 283 607
Improved Deser formula (18) 293 596
Resummed formula (19) 284 605

multiple scattering series is given as [43, 62]

aK�d =
µK�d

mK�

Z
d3r ⇢d(r) ãK�d(r), (20)

ãK�d(r) =
ãp + ãn + (2ãpãn � ã2

ex

)/r � 2ã2
ex

ãn/r
2

1� ãpãn/r2 + ã2
ex

ãn/r3
,

(21)

with the K�-deuteron reduced mass µK�d, and ⇢d(r)
is the nucleon density distribution in the deuteron, ob-
tained in the present case using the Minnesota poten-
tial. The scattering lengths are defined as ãp ⌘ ãK�p,
ãn ⌘ ãK�n and ã2

ex

⌘ ã2
K�p- ¯K0n

/(1 + ã
¯K0n/r), and the

scattering lengths ã
¯KN in the laboratory frame are given

as ã
¯KN ⌘ mK

µK̄N
a

¯KN with the K̄N reduced mass µ
¯KN .

Using the Kyoto K̄N potential, the resulting two-body
K̄N scattering lengths are shown in Table II. These scat-
tering lengths are defined by the scattering amplitudes
at the threshold energy for the diagonal channels and at
the average of the threshold energies for the o↵-diagonal
K�p-K̄0n channel. Their real and imaginary parts agree
well with the original amplitudes [33, 34] within their un-
certainties. The K�d scattering length is then calculated
from Eqs. (20) and (21) as

aK�d = (�1.42 + i 1.60) fm. (22)

This result remains unchanged when we adopt a realis-
tic deuteron wavefunction (including the D-wave compo-
nent) generated from the CD-Bonn potential [53].
Next we apply the improved Deser formulae (18) and

(19) to kaonic deuterium. The results are summarized
in Table VII together with that from the full three-body
calculation. The logarithmic correction term is now in-
creased as |µK�d aK�d/(µK�p aK�p)| ⇠ 1.3, so the dif-
ference between Eqs. (18) and (19) becomes larger than
that in kaonic hydrogen. In addition, the deviation from
the full three-body calculation is of the order of &100 eV.
Note however that the K�d scattering length in

Eq. (22) is estimated in the FCA limit. Hence it can
be di↵erent from the exact value. For instance, the im-
portance of recoil corrections, naturally included in the
full three-body calculation but neglected in FCA, is dis-
cussed in Refs. [61, 63]. In addition, the determination of
the precise energy of the two-body K̄N system is subject
to some uncertainties.



Expectation : 
significantly improved constraint 
on I = 1 component of         interaction  
if deuterium level shift and width can be determined within ~25% accuracy
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SIDDHARTA2

Strong interaction, one of the four fundamental interactions in the Universe, is described by

quantum chromodynamics (QCD). Many aspects of QCD, especially at low energies, remain

unclear due to the lack of experimental data. The SIDDHARTA2 (under preparation) and

AMADEUS (in the design stage) experiments have as their objective to make unique

measurements at a global level on strong interaction, using particles called kaons, which

consist of a quark and an antiquark (one of the two with “strangeness”), produced by the

DAΦNE accelerator of the National Laboratory of Frascati. SIDDHARTA2, successor of SIDDHARTA (which made the best measurement

worldwide of kaonic hydrogen), studies the formation and decay of exotic atoms, in particular of kaonic deuterium, while AMADEUS will make

precision measurements of the interaction of kaons in various nuclear targets. The results will provide a better understanding of QCD in the

sector with strangeness (i.e. where there is the strange quark) and will also have important consequences in astrophysics for the study of

neutron stars.  Both SIDDHARTA2 and AMADEUS use cutting-edge technologies (detectors and acquisition systems) which could have

important applications in medicine, biology and industry.
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density: 5% (LDD)
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¾ vertex cut 
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… important new constraints on isospin I = 1
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SUMMARY and CONCLUSIONS
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Progress in KAONIC DEUTERIUM calculations :

Chiral SU(3) - based          STRONG (short-range) interaction

 COULOMB (long-range) interaction

K̄N

K�p

Advanced three-body computations (eV precision)

Solving K̄NN Schrödinger equation with complex K̄N potential :

Strong interaction energy shift and width 

�E1S ' 0.7 keV �1S ' 1.0 keV (~10% uncertainty)

Consistent with advanced Faddeev calculations 
(J. Révai, PRC (2016) ,   separable interactions)

Looking forward to SIDDHARTA2 and J-PARC E57

K̄N interaction
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